PyGobject(一百零二)Cairo系列——贪吃蛇游戏

本文介绍了一个使用Python和GTK+库实现的经典蛇游戏。玩家通过控制蛇吃苹果来增长蛇身,同时避免碰到墙壁和自己的身体。游戏包含计分、碰撞检测等功能。

例子

这里写图片描述
代码:

#!/usr/bin/env python3
# Created by xiaosanyu at 16/7/6
# section 152
TITLE = "Snake game"
DESCRIPTION = """
Snake is an older classic video game. It was first created in late 70s.
Later it was brought to PCs. In this game the player controls a snake.
The objective is to eat as many apples as possible.
Each time the snake eats an apple, its body grows.
The snake must avoid the walls and its own body.
This game is sometimes called Nibbles.
"""

import gi

gi.require_version("Gtk", "3.0")
from gi.repository import Gtk, Gdk, GLib

import cairo
import sys
import random
import os

FONT_SIZE = 14
WIDTH = 300
HEIGHT = 270
DOT_SIZE = 10
ALL_DOTS = int(WIDTH * HEIGHT / (DOT_SIZE * DOT_SIZE))
RAND_POS = 26
DELAY = 200
x = [0] * ALL_DOTS
y = [0] * ALL_DOTS


class Board(Gtk.DrawingArea):
    def __init__(self):
        super(Board, self).__init__()
        self.modify_bg(Gtk.StateFlags.NORMAL, Gdk.Color(0, 0, 0))
        self.set_size_request(WIDTH, HEIGHT)

        self.connect("draw", self.draw)
        self.init_game()

    def on_timer(self):
        if self.inGame:
            self.check_apple()
            self.check_collision()
            self.move()
            self.queue_draw()
            return True
        else:
            return False

    def init_game(self):
        self.left = False
        self.right = True
        self.up = False
        self.down = False
        self.inGame = True
        self.dots = 3
        for i in range(self.dots):
            x[i] = 50 - i * 10
            y[i] = 50
        try:
            self.dot = cairo.ImageSurface.create_from_png(os.path.join(os.path.dirname(__file__), "../data/dot.png"))
            self.head = cairo.ImageSurface.create_from_png(os.path.join(os.path.dirname(__file__), "../data/head.png"))
            self.apple = cairo.ImageSurface.create_from_png(
                    os.path.join(os.path.dirname(__file__), "../data/apple.png"))
        except Exception as e:
            print(e)
            sys.exit(1)
        self.locate_apple()
        self.start_game()

    def start_game(self):
        GLib.timeout_add(DELAY, self.on_timer)

    def draw(self, widget, cr):
        if self.inGame:
            cr.set_source_rgb(0.6, 0.6, 0.6)
            cr.paint()
            cr.set_source_surface(self.apple, self.apple_x, self.apple_y)
            cr.paint()
            for z in range(self.dots):
                if z == 0:
                    cr.set_source_surface(self.head, x[z], y[z])
                    cr.paint()
                else:
                    cr.set_source_surface(self.dot, x[z], y[z])
                    cr.paint()
        else:
            self.game_over(widget, cr)

    def game_over(self, widget, cr):
        w = widget.get_allocated_width()
        h = widget.get_allocated_height()
        (x, y, width, height, dx, dy) = cr.text_extents("Game Over")
        cr.set_source_rgb(65535, 0, 0)
        cr.set_font_size(FONT_SIZE)
        cr.move_to((w - width) / 2, h / 2)
        cr.show_text("Game Over")
        self.inGame = False

    def check_apple(self):
        if x[0] == self.apple_x and y[0] == self.apple_y:
            self.dots += 1
            self.locate_apple()

    def move(self):
        z = self.dots

        while z > 0:
            x[z] = x[(z - 1)]
            y[z] = y[(z - 1)]
            z -= 1
        if self.left:
            x[0] -= DOT_SIZE
        if self.right:
            x[0] += DOT_SIZE
        if self.up:
            y[0] -= DOT_SIZE
        if self.down:
            y[0] += DOT_SIZE

    def check_collision(self):
        z = self.dots
        while z > 0:
            if z > 4 and x[0] == x[z] and y[0] == y[z]:
                self.inGame = False
            z -= 1
        if y[0] > HEIGHT - DOT_SIZE:
            self.inGame = False
        if y[0] < 0:
            self.inGame = False
        if x[0] > WIDTH - DOT_SIZE:
            self.inGame = False
        if x[0] < 0:
            self.inGame = False

    def locate_apple(self):
        r = random.randint(0, RAND_POS)
        self.apple_x = r * DOT_SIZE
        r = random.randint(0, RAND_POS)
        self.apple_y = r * DOT_SIZE

    def on_key_down(self, event):
        key = event.keyval
        if key == Gdk.KEY_Left and not self.right:
            self.left = True
            self.up = False
            self.down = False

        if key == Gdk.KEY_Right and not self.left:
            self.right = True
            self.up = False
            self.down = False
        if key == Gdk.KEY_Up and not self.down:
            self.up = True
            self.right = False
            self.left = False
        if key == Gdk.KEY_Down and not self.up:
            self.down = True
            self.right = False
            self.left = False
        if key == Gdk.KEY_space:
            if self.inGame:
                self.inGame = False
            else:
                self.inGame = True
                self.start_game()


class Snake(Gtk.Window):
    def __init__(self):
        super(Snake, self).__init__()
        self.set_title('Snake')
        self.set_size_request(WIDTH, HEIGHT)

        self.set_resizable(False)
        self.move((Gdk.Screen.width() - WIDTH) / 2, (Gdk.Screen.height() - HEIGHT) / 2)
        self.board = Board()
        self.connect("key-press-event", self.on_key_down)
        self.add(self.board)
        self.connect("destroy", Gtk.main_quit)
        self.show_all()

    def on_key_down(self, widget, event):
        key = event.keyval
        self.board.on_key_down(event)


def main():
    Snake()
    Gtk.main()


if __name__ == "__main__":
    main()





代码下载地址:http://download.youkuaiyun.com/detail/a87b01c14/9594728

【路径规划】(螺旋)基于A星全覆盖路径规划研究(Matlab代码实现)内容概要:本文围绕“基于A星算法的全覆盖路径规划”展开研究,重点介绍了一种结合螺旋搜索策略的A星算法在栅格地图中的路径规划实现方法,并提供了完整的Matlab代码实现。该方法旨在解决移动机器人或无人机在未知或部分已知环境中实现高效、无遗漏的区域全覆盖路径规划问题。文中详细阐述了A星算法的基本原理、启发式函数设计、开放集与关闭集管理机制,并融合螺旋遍历策略以提升初始探索效率,确保覆盖完整性。同时,文档提及该研究属于一系列路径规划技术的一部分,涵盖多种智能优化算法与其他路径规划方法的融合应用。; 适合人群:具备一定Matlab编程基础,从事机器人、自动化、智能控制及相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于服务机器人、农业无人机、扫地机器人等需要完成区域全覆盖任务的设备路径设计;②用于学习和理解A星算法在实际路径规划中的扩展应用,特别是如何结合特定搜索策略(如螺旋)提升算法性能;③作为科研复现与算法对比实验的基础代码参考。; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注A星算法与螺旋策略的切换逻辑与条件判断,并可通过修改地图环境、障碍物分布等方式进行仿真实验,进一步掌握算法适应性与优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sanxiaochengyu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值