1099 Build A Binary Search Tree (30 point(s))
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index
, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
经验总结:
emmmm 迄今为止做到最简单的30分的题目了,通过率0.57也足以说明,首先把所给序列从小到大排个序,然后中序遍历树,将此序列依次填入,然后再层序遍历就行啦~
AC代码
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn=110;
int pre[maxn],level[maxn],n,pos=0;
struct node
{
int lchild,rchild,data;
}Node[maxn];
void inorder(int root)
{
if(root==-1)
return ;
if(Node[root].lchild!=-1)
inorder(Node[root].lchild);
Node[root].data=pre[pos++];
if(Node[root].rchild!=-1)
inorder(Node[root].rchild);
}
void levelorder(int root)
{
queue<node> q;
pos=0;
q.push(Node[root]);
while(q.size())
{
node x=q.front();
q.pop();
level[pos++]=x.data;
if(x.lchild!=-1)
q.push(Node[x.lchild]);
if(x.rchild!=-1)
q.push(Node[x.rchild]);
}
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;++i)
scanf("%d%d",&Node[i].lchild,&Node[i].rchild);
for(int i=0;i<n;++i)
scanf("%d",&pre[i]);
sort(pre,pre+n);
inorder(0);
levelorder(0);
for(int i=0;i<n;++i)
printf("%d%c",level[i],i<n-1?' ':'\n');
return 0;
}