POJ2455-Secret Milking Machine

本文探讨了如何帮助农夫约翰在农场内寻找从谷仓到秘密挤奶机的最短且不重复路径的问题,目的是在限定次数内完成任务的同时确保所用路径的最大长度尽可能小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Secret Milking Machine
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 12405 Accepted: 3623

Description

Farmer John is constructing a new milking machine and wishes to keep it secret as long as possible. He has hidden in it deep within his farm and needs to be able to get to the machine without being detected. He must make a total of T (1 <= T <= 200) trips to the machine during its construction. He has a secret tunnel that he uses only for the return trips. 

The farm comprises N (2 <= N <= 200) landmarks (numbered 1..N) connected by P (1 <= P <= 40,000) bidirectional trails (numbered 1..P) and with a positive length that does not exceed 1,000,000. Multiple trails might join a pair of landmarks. 

To minimize his chances of detection, FJ knows he cannot use any trail on the farm more than once and that he should try to use the shortest trails. 

Help FJ get from the barn (landmark 1) to the secret milking machine (landmark N) a total of T times. Find the minimum possible length of the longest single trail that he will have to use, subject to the constraint that he use no trail more than once. (Note well: The goal is to minimize the length of the longest trail, not the sum of the trail lengths.) 

It is guaranteed that FJ can make all T trips without reusing a trail.

Input

* Line 1: Three space-separated integers: N, P, and T 

* Lines 2..P+1: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, indicating that a trail connects landmark A_i to landmark B_i with length L_i.

Output

* Line 1: A single integer that is the minimum possible length of the longest segment of Farmer John's route.

Sample Input

7 9 2
1 2 2
2 3 5
3 7 5
1 4 1
4 3 1
4 5 7
5 7 1
1 6 3
6 7 3

Sample Output

5

Hint

Farmer John can travel trails 1 - 2 - 3 - 7 and 1 - 6 - 7. None of the trails travelled exceeds 5 units in length. It is impossible for Farmer John to travel from 1 to 7 twice without using at least one trail of length 5. 

Huge input data,scanf is recommended.

Source



题意:给你一个n个点和m条边的无向图以及每条边的权值。要求从1到n至少要有T条边不重复的路径,在这个前提下求出所有路径最大边权值的最小值

解题思路:二分+网络流



#include <iostream>  
#include <cstdio>  
#include <string>  
#include <cstring>  
#include <algorithm>  
#include <queue>  
#include <vector>  
#include <set>  
#include <stack>  
#include <map>  
#include <climits>  
#include <bitset>  

using namespace std;

#define LL long long  
const int INF = 0x3f3f3f3f;
#define MAXN 500

int n,m,t;
int x[4 * MAXN*MAXN], y[4 * MAXN*MAXN], w[4 * MAXN*MAXN];

struct node
{
	int u, v, next, cap;
} edge[4*MAXN*MAXN];
int s[MAXN], d[MAXN], visit[MAXN];
int cnt;

void init()
{
	cnt = 0;
	memset(s, -1, sizeof(s));
}

void add(int u, int v, int c)
{
	edge[cnt].u = u;
	edge[cnt].v = v;
	edge[cnt].cap = c;
	edge[cnt].next = s[u];
	s[u] = cnt++;
	edge[cnt].u = v;
	edge[cnt].v = u;
	edge[cnt].cap = c;//无向边cap不为零
	edge[cnt].next = s[v];
	s[v] = cnt++;
}

bool BFS(int ss, int ee)
{
	memset(d, 0, sizeof d);
	d[ss] = 1;
	queue<int>q;
	q.push(ss);
	while (!q.empty())
	{
		int pre = q.front();
		q.pop();
		for (int i = s[pre]; ~i; i = edge[i].next)
		{
			int v = edge[i].v;
			if (edge[i].cap > 0 && !d[v])
			{
				d[v] = d[pre] + 1;
				q.push(v);
			}
		}
	}
	return d[ee];
}

int DFS(int x, int exp, int ee)
{
	if (x == ee || !exp) return exp;
	int temp, flow = 0;
	for (int i = s[x]; ~i; i = edge[i].next)
	{
		int v = edge[i].v;
		if (d[v] == d[x] + 1 && (temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
		{
			edge[i].cap -= temp;
			edge[i ^ 1].cap += temp;
			flow += temp;
			exp -= temp;
			if (!exp) break;
		}
	}
	if (!flow) d[x] = 0;
	return flow;
}

int Dinic_flow(int d)
{
	init();
	add(n + 1, 1, INF);
	add(n, n + 2, INF);
	for (int i = 0; i < m; i++)
		if (w[i] <= d) add(x[i], y[i], 1);
	int ans = 0;
	while (BFS(n+1, n+2))
		ans += DFS(n+1, INF, n+2);
	return ans;
}

int main()
{
	while (~scanf("%d %d %d", &n, &m, &t))
	{
		int ma = -1;
		for (int i = 0; i < m; i++)
		{
			scanf("%d%d%d", &x[i], &y[i], &w[i]);
			ma = max(ma, w[i]);
		}
		int l = 0, r = ma, ans;
		while (l <= r)
		{
			int mid = (l + r) >> 1;
			if (Dinic_flow(mid) >= t) { ans = mid; r = mid - 1; }
			else l = mid + 1;
		}
		printf("%d\n", ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值