1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:6767Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174Sample Input 2:
2222Sample Output 2:
2222 - 2222 = 0000
题意:给你一个数,将它所有数字从大到小排序形成一个数,所有数字从小到大排序形成一个数,然后相减,形成一个形的数,不断地这样操作,直至它为0或为6174
解题思路:暴力模拟
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int n, a[20];
int get(int x, int flag)
{
for (int i = 0; i < 4; i++) a[i] = x % 10, x /= 10;
if (flag) sort(a, a + 4);
else sort(a, a + 4, greater<int>());
int ans = 0;
for (int i = 0; i < 4; i++) ans = ans * 10 + a[i];
return ans;
}
int main()
{
while (~scanf("%d", &n))
{
do
{
int x = get(n, 0), y = get(n, 1);
n = x - y;
printf("%04d - %04d = %04d\n", x, y, n);
}while (n != 6174 && n);
}
return 0;
}

本文介绍了一种数学游戏,通过不断重组四位数并求差,最终达到固定点6174,即Kaprekar常数。文章提供了一个C++程序示例,用于演示这一过程。
1539

被折叠的 条评论
为什么被折叠?



