330. Patching Array

本文介绍了一种算法,用于计算给定正整数数组及目标数值n时所需的最小补丁数量,确保所有[1,n]范围内的数值都能通过数组元素求和得到。采用贪心策略,若数组中存在能扩大覆盖范围的元素,则将其加入;否则,添加所需补丁。

iven a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n] inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.

Example 1:
nums = [1, 3], n = 6
Return 1.

Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.

Example 2:
nums = [1, 5, 10], n = 20
Return 2.
The two patches can be [2, 4].

Example 3:
nums = [1, 2, 2], n = 5
Return 0.

这个应该是贪心的思想,假设[1,n)已经满足,那么接下来需要添加的数字就是n。
然后搜索一遍数组,如果数组num[i]的大小是在[1,n)范围内,那么就可以把这个数组加进去,
这个时候[1,n+num[i])的数字都是可以覆盖的;如果num[i]大于n,那么说明至少n
是无法被覆盖的,这个时候就需要把n加进去。

class Solution {
public:
    int minPatches(vector<int>& nums, int n) {
        int ans=0,i=0;
        long sum=0,tmp=1;//题目的数据比较大,会超过int类型的范围,必须用long
        while(tmp<=n){
            if(i<nums.size()&&nums[i]<=tmp){
                sum+=nums[i++];
                tmp=sum+1;
            }else{
                sum+=tmp;
                ans++;
                tmp=sum+1;
            }
        }
        return ans;
    }
};
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值