写在代码之前
在网上搜了很多都说要打包jar,或者需要在环境变量中写入,比较繁琐。但是笔者写的这个代码也是能直接跑的,正常输出结果。主要是要有下面这行代码,会在控制台打印出运行结果并在完成后退出,这样看着比较直观一点。
System.exit(job.waitForCompletion(true) ? 0 : 1);
Mapper类
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.Arrays;
public class MapperTest extends Mapper<LongWritable
, Text, Text, IntWritable> {
/**
* @param key 文本的行号
* @param value 待统计单词的文本
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//得到文件的文本,每一行为一个value
String text = value.toString();
String[] words = text.split(" ");
//将每个单词进行统计 出现次数为1
Arrays.stream(words).forEach(
word -> {
try {
context.write(new Text(word), new IntWritable(1));
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
);
}
}
Reducer
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class ReducerTest extends Reducer<Text, IntWritable, Text, IntWritable> {
/**
* @param key 单词
* @param values 对应频数
* @param context
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//统计频数之和
int sum = 0;
for (IntWritable count : values) {
sum += count.get();
context.write(key, new IntWritable(sum));
}
}
}
启动类主函数
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class Runner {
private static final String inpath = "D:\\codeWareCollections\\hadoop-2.9.1\\input\\README.txt";
public static void main(String[] args) {
Configuration conf = new Configuration();
try {
System.setProperty("hadoop.home.dir", "D:\\codeWareCollections\\hadoop-2.9.1");
Job job = Job.getInstance(conf, "first Hadoop");
job.setJarByClass(Runner.class);
job.setMapperClass(MapperTest.class);
job.setReducerClass(ReducerTest.class);
// 输出key类型
job.setOutputKeyClass(Text.class);
// 输出value类型
job.setOutputValueClass(IntWritable.class);
//设置输入输出路径
Path inputPath = new Path(inpath);
FileInputFormat.addInputPath(job, inputPath);
FileOutputFormat.setOutputPath(job, new Path("D:\\output"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}
}