I0328 19:29:51.803539 2532 caffe.cpp:217] Using GPUs 0 //1. 运行模式:cpu或者gpu
I0328 19:29:51.833237 2532 caffe.cpp:222] GPU 0: TITAN X (Pascal)
I0328 19:29:54.729840 2532 solver.cpp:48] Initializing solver from parameters: //2.经过解析后的超参数内容
test_iter: 100
test_interval: 500
base_lr: 0.01
display: 100
max_iter: 10000
lr_policy: "inv"
gamma: 0.0001
power: 0.75
momentum: 0.9
weight_decay: 0.0005
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: GPU
device_id: 0
net: "examples/mnist/lenet_train_test.prototxt"
train_state {
level: 0
stage: ""
}
I0328 19:29:54.729990 2532 solver.cpp:91] Creating training net from net file: examples/mnist/lenet_train_test.prototxt //3.解析网络协议内容,创建网络
I0328 19:29:54.730259 2532 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I0328 19:29:54.730273 2532 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy //3.1 说明训练网络和测试网络之间的差别在哪里
I0328 19:29:54.730342 2532 net.cpp:58] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
level: 0
stage: ""
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0328 19:29:54.730403 2532 layer_factory.hpp:77] Creating layer mnist //逐层创建
I0328 19:29:54.730799 2532 net.cpp:100] Creating Layer mnist
I0328 19:29:54.730810 2532 net.cpp:408] mnist -> data
I0328 19:29:54.730834 2532 net.cpp:408] mnist -> label
I0328 19:29:54.797408 2538 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_train_lmdb //打开训练集
I0328 19:29:54.826562 2532 data_layer.cpp:41] output data size: 64,1,28,28
I0328 19:29:54.831125 2532 net.cpp:150] Setting up mnist
I0328 19:29:54.831168 2532 net.cpp:157] Top shape: 64 1 28 28 (50176) //输出数据的维度 n c h w(n*c*h*w)
I0328 19:29:54.831176 2532 net.cpp:157] Top shape: 64 (64) // 输出label的维度
I0328 19:29:54.831181 2532 net.cpp:165] Memory required for data: 200960 //统计内存占用情况,逐层累计(如何统计的呢?)
I0328 19:29:54.831193 2532 layer_factory.hpp:77] Creating layer conv1
I0328 19:29:54.831220 2532 net.cpp:100] Creating Layer conv1
I0328 19:29:54.831228 2532 net.cpp:434] conv1 <- data //输入<-
I0328 19:29:54.831243 2532 net.cpp:408] conv1 -> conv1 //输出->
I0328 19:29:56.820606 2532 net.cpp:150] Setting up conv1
I0328 19:29:56.820641 2532 net.cpp:157] Top shape: 64 20 24 24 (737280) // 输出维度
I0328 19:29:56.820646 2532 net.cpp:165] Memory required for data: 3150080
I0328 19:29:56.820662 2532 layer_factory.hpp:77] Creating layer pool1
I0328 19:29:56.820677 2532 net.cpp:100] Creating Layer pool1
I0328 19:29:56.820700 2532 net.cpp:434] pool1 <- conv1
I0328 19:29:56.820708 2532 net.cpp:408] pool1 -> pool1
I0328 19:29:56.820751 2532 net.cpp:150] Setting up pool1
I0328 19:29:56.820760 2532 net.cpp:157] Top shape: 64 20 12 12 (184320)
I0328 19:29:56.820762 2532 net.cpp:165] Memory required for data: 3887360
I0328 19:29:56.820765 2532 layer_factory.hpp:77] Creating layer conv2
I0328 19:29:56.820776 2532 net.cpp:100] Creating Layer conv2
I0328 19:29:56.820780 2532 net.cpp:434] conv2 <- pool1
I0328 19:29:56.820786 2532 net.cpp:408] conv2 -> conv2
I0328 19:29:56.822167 2532 net.cpp:150] Setting up conv2
I0328 19:29:56.822191 2532 net.cpp:157] Top shape: 64 50 8 8 (204800)
I0328 19:29:56.822197 2532 net.cpp:165] Memory required for data: 4706560
I0328 19:29:56.822207 2532 layer_factory.hpp:77] Creating layer pool2
I0328 19:29:56.822223 2532 net.cpp:100] Creating Layer pool2
I0328 19:29:56.822227 2532 net.cpp:434] pool2 <- conv2
I0328 19:29:56.822232 2532 net.cpp:408] pool2 -> pool2
I0328 19:29:56.822294 2532 net.cpp:150] Setting up pool2
I0328 19:29:56.822302 2532 net.cpp:157] Top shape: 64 50 4 4 (51200)
I0328 19:29:56.822305 2532 net.cpp:165] Memory required for data: 4911360
I0328 19:29:56.822307 2532 layer_factory.hpp:77] Creating layer ip1
I0328 19:29:56.822320 2532 net.cpp:100] Creating Layer ip1
I0328 19:29:56.822325 2532 net.cpp:434] ip1 <- pool2
I0328 19:29:56.822335 2532 net.cpp:408] ip1 -> ip1
I0328 19:29:56.825884 2532 net.cpp:150] Setting up ip1
I0328 19:29:56.825932 2532 net.cpp:157] Top shape: 64 500 (32000)
I0328 19:29:56.825935 2532 net.cpp:165] Memory required for data: 5039360
I0328 19:29:56.825947 2532 layer_factory.hpp:77] Creating layer relu1
I0328 19:29:56.825956 2532 net.cpp:100] Creating Layer relu1
I0328 19:29:56.825960 2532 net.cpp:434] relu1 <- ip1
I0328 19:29:56.825968 2532 net.cpp:395] relu1 -> ip1 (in-place)
I0328 19:29:56.826165 2532 net.cpp:150] Setting up relu1
I0328 19:29:56.826175 2532 net.cpp:157] Top shape: 64 500 (32000)
I0328 19:29:56.826179 2532 net.cpp:165] Memory required for data: 5167360
I0328 19:29:56.826181 2532 layer_factory.hpp:77] Creating layer ip2
I0328 19:29:56.826189 2532 net.cpp:100] Creating Layer ip2
I0328 19:29:56.826195 2532 net.cpp:434] ip2 <- ip1
I0328 19:29:56.826201 2532 net.cpp:408] ip2 -> ip2
I0328 19:29:56.827221 2532 net.cpp:150] Setting up ip2
I0328 19:29:56.827252 2532 net.cpp:157] Top shape: 64 10 (640)
I0328 19:29:56.827256 2532 net.cpp:165] Memory required for data: 5169920
I0328 19:29:56.827262 2532 layer_factory.hpp:77] Creating layer loss
I0328 19:29:56.827271 2532 net.cpp:100] Creating Layer loss
I0328 19:29:56.827275 2532 net.cpp:434] loss <- ip2
I0328 19:29:56.827278 2532 net.cpp:434] loss <- label
I0328 19:29:56.827283 2532 net.cpp:408] loss -> loss
I0328 19:29:56.827303 2532 layer_factory.hpp:77] Creating layer loss
I0328 19:29:56.827914 2532 net.cpp:150] Setting up loss
I0328 19:29:56.827927 2532 net.cpp:157] Top shape: (1)
I0328 19:29:56.827942 2532 net.cpp:160] with loss weight 1
I0328 19:29:56.827957 2532 net.cpp:165] Memory required for data: 5169924 //内存总占用情况
I0328 19:29:56.827960 2532 net.cpp:226] loss needs backward computation. // 打印出需要反向传播项
I0328 19:29:56.827965 2532 net.cpp:226] ip2 needs backward computation.
I0328 19:29:56.827966 2532 net.cpp:226] relu1 needs backward computation.
I0328 19:29:56.827970 2532 net.cpp:226] ip1 needs backward computation.
I0328 19:29:56.827972 2532 net.cpp:226] pool2 needs backward computation.
I0328 19:29:56.827975 2532 net.cpp:226] conv2 needs backward computation.
I0328 19:29:56.827977 2532 net.cpp:226] pool1 needs backward computation.
I0328 19:29:56.827980 2532 net.cpp:226] conv1 needs backward computation.
I0328 19:29:56.827983 2532 net.cpp:228] mnist does not need backward computation.
I0328 19:29:56.827986 2532 net.cpp:270] This network produces output loss
I0328 19:29:56.827994 2532 net.cpp:283] Network initialization done.
I0328 19:29:56.828243 2532 solver.cpp:181] Creating test net (#0) specified by net file: examples/mnist/lenet_train_test.prototxt // 创建测试网络
I0328 19:29:56.828287 2532 net.cpp:322] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist
I0328 19:29:56.828361 2532 net.cpp:58] Initializing net from parameters:
name: "LeNet"
state {
phase: TEST
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0328 19:29:56.828421 2532 layer_factory.hpp:77] Creating layer mnist
I0328 19:29:56.828516 2532 net.cpp:100] Creating Layer mnist
I0328 19:29:56.828526 2532 net.cpp:408] mnist -> data
I0328 19:29:56.828533 2532 net.cpp:408] mnist -> label
I0328 19:29:56.892670 2541 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_test_lmdb
I0328 19:29:56.892979 2532 data_layer.cpp:41] output data size: 100,1,28,28
I0328 19:29:56.940191 2532 net.cpp:150] Setting up mnist
I0328 19:29:56.940234 2532 net.cpp:157] Top shape: 100 1 28 28 (78400)
I0328 19:29:56.940244 2532 net.cpp:157] Top shape: 100 (100)
I0328 19:29:56.940249 2532 net.cpp:165] Memory required for data: 314000
I0328 19:29:56.940258 2532 layer_factory.hpp:77] Creating layer label_mnist_1_split
I0328 19:29:56.940282 2532 net.cpp:100] Creating Layer label_mnist_1_split
I0328 19:29:56.940292 2532 net.cpp:434] label_mnist_1_split <- label
I0328 19:29:56.940301 2532 net.cpp:408] label_mnist_1_split -> label_mnist_1_split_0
I0328 19:29:56.940315 2532 net.cpp:408] label_mnist_1_split -> label_mnist_1_split_1
I0328 19:29:56.940464 2532 net.cpp:150] Setting up label_mnist_1_split
I0328 19:29:56.940479 2532 net.cpp:157] Top shape: 100 (100)
I0328 19:29:56.940484 2532 net.cpp:157] Top shape: 100 (100)
I0328 19:29:56.940487 2532 net.cpp:165] Memory required for data: 314800
I0328 19:29:56.940491 2532 layer_factory.hpp:77] Creating layer conv1
I0328 19:29:56.940510 2532 net.cpp:100] Creating Layer conv1
I0328 19:29:56.940517 2532 net.cpp:434] conv1 <- data
I0328 19:29:56.940526 2532 net.cpp:408] conv1 -> conv1
I0328 19:29:56.941525 2532 net.cpp:150] Setting up conv1
I0328 19:29:56.941543 2532 net.cpp:157] Top shape: 100 20 24 24 (1152000)
I0328 19:29:56.941550 2532 net.cpp:165] Memory required for data: 4922800
I0328 19:29:56.941563 2532 layer_factory.hpp:77] Creating layer pool1
I0328 19:29:56.941596 2532 net.cpp:100] Creating Layer pool1
I0328 19:29:56.941601 2532 net.cpp:434] pool1 <- conv1
I0328 19:29:56.941606 2532 net.cpp:408] pool1 -> pool1
I0328 19:29:56.941656 2532 net.cpp:150] Setting up pool1
I0328 19:29:56.941668 2532 net.cpp:157] Top shape: 100 20 12 12 (288000)
I0328 19:29:56.941671 2532 net.cpp:165] Memory required for data: 6074800
I0328 19:29:56.941675 2532 layer_factory.hpp:77] Creating layer conv2
I0328 19:29:56.941689 2532 net.cpp:100] Creating Layer conv2
I0328 19:29:56.941695 2532 net.cpp:434] conv2 <- pool1
I0328 19:29:56.941704 2532 net.cpp:408] conv2 -> conv2
I0328 19:29:56.943431 2532 net.cpp:150] Setting up conv2
I0328 19:29:56.943454 2532 net.cpp:157] Top shape: 100 50 8 8 (320000)
I0328 19:29:56.943472 2532 net.cpp:165] Memory required for data: 7354800
I0328 19:29:56.943490 2532 layer_factory.hpp:77] Creating layer pool2
I0328 19:29:56.943503 2532 net.cpp:100] Creating Layer pool2
I0328 19:29:56.943511 2532 net.cpp:434] pool2 <- conv2
I0328 19:29:56.943518 2532 net.cpp:408] pool2 -> pool2
I0328 19:29:56.943570 2532 net.cpp:150] Setting up pool2
I0328 19:29:56.943581 2532 net.cpp:157] Top shape: 100 50 4 4 (80000)
I0328 19:29:56.943585 2532 net.cpp:165] Memory required for data: 7674800
I0328 19:29:56.943608 2532 layer_factory.hpp:77] Creating layer ip1
I0328 19:29:56.943629 2532 net.cpp:100] Creating Layer ip1
I0328 19:29:56.943634 2532 net.cpp:434] ip1 <- pool2
I0328 19:29:56.943646 2532 net.cpp:408] ip1 -> ip1
I0328 19:29:56.947994 2532 net.cpp:150] Setting up ip1
I0328 19:29:56.948014 2532 net.cpp:157] Top shape: 100 500 (50000)
I0328 19:29:56.948021 2532 net.cpp:165] Memory required for data: 7874800
I0328 19:29:56.948032 2532 layer_factory.hpp:77] Creating layer relu1
I0328 19:29:56.948041 2532 net.cpp:100] Creating Layer relu1
I0328 19:29:56.948045 2532 net.cpp:434] relu1 <- ip1
I0328 19:29:56.948053 2532 net.cpp:395] relu1 -> ip1 (in-place)
I0328 19:29:56.948648 2532 net.cpp:150] Setting up relu1
I0328 19:29:56.948706 2532 net.cpp:157] Top shape: 100 500 (50000)
I0328 19:29:56.948719 2532 net.cpp:165] Memory required for data: 8074800
I0328 19:29:56.948724 2532 layer_factory.hpp:77] Creating layer ip2
I0328 19:29:56.948736 2532 net.cpp:100] Creating Layer ip2
I0328 19:29:56.948741 2532 net.cpp:434] ip2 <- ip1
I0328 19:29:56.948748 2532 net.cpp:408] ip2 -> ip2
I0328 19:29:56.948923 2532 net.cpp:150] Setting up ip2
I0328 19:29:56.948935 2532 net.cpp:157] Top shape: 100 10 (1000)
I0328 19:29:56.948938 2532 net.cpp:165] Memory required for data: 8078800
I0328 19:29:56.948945 2532 layer_factory.hpp:77] Creating layer ip2_ip2_0_split //caffe 内部层实现在网络协议中没有,就是讲iP2复制2份吧
I0328 19:29:56.948952 2532 net.cpp:100] Creating Layer ip2_ip2_0_split
I0328 19:29:56.948956 2532 net.cpp:434] ip2_ip2_0_split <- ip2
I0328 19:29:56.948963 2532 net.cpp:408] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0328 19:29:56.948971 2532 net.cpp:408] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0328 19:29:56.949012 2532 net.cpp:150] Setting up ip2_ip2_0_split
I0328 19:29:56.949020 2532 net.cpp:157] Top shape: 100 10 (1000)
I0328 19:29:56.949025 2532 net.cpp:157] Top shape: 100 10 (1000)
I0328 19:29:56.949029 2532 net.cpp:165] Memory required for data: 8086800
I0328 19:29:56.949033 2532 layer_factory.hpp:77] Creating layer accuracy
I0328 19:29:56.949040 2532 net.cpp:100] Creating Layer accuracy
I0328 19:29:56.949043 2532 net.cpp:434] accuracy <- ip2_ip2_0_split_0
I0328 19:29:56.949049 2532 net.cpp:434] accuracy <- label_mnist_1_split_0
I0328 19:29:56.949056 2532 net.cpp:408] accuracy -> accuracy
I0328 19:29:56.949064 2532 net.cpp:150] Setting up accuracy
I0328 19:29:56.949070 2532 net.cpp:157] Top shape: (1)
I0328 19:29:56.949074 2532 net.cpp:165] Memory required for data: 8086804
I0328 19:29:56.949077 2532 layer_factory.hpp:77] Creating layer loss
I0328 19:29:56.949084 2532 net.cpp:100] Creating Layer loss
I0328 19:29:56.949087 2532 net.cpp:434] loss <- ip2_ip2_0_split_1
I0328 19:29:56.949092 2532 net.cpp:434] loss <- label_mnist_1_split_1
I0328 19:29:56.949113 2532 net.cpp:408] loss -> loss
I0328 19:29:56.949123 2532 layer_factory.hpp:77] Creating layer loss
I0328 19:29:56.949414 2532 net.cpp:150] Setting up loss
I0328 19:29:56.949427 2532 net.cpp:157] Top shape: (1)
I0328 19:29:56.949431 2532 net.cpp:160] with loss weight 1
I0328 19:29:56.949442 2532 net.cpp:165] Memory required for data: 8086808
I0328 19:29:56.949446 2532 net.cpp:226] loss needs backward computation.
I0328 19:29:56.949451 2532 net.cpp:228] accuracy does not need backward computation.
I0328 19:29:56.949456 2532 net.cpp:226] ip2_ip2_0_split needs backward computation.
I0328 19:29:56.949460 2532 net.cpp:226] ip2 needs backward computation.
I0328 19:29:56.949463 2532 net.cpp:226] relu1 needs backward computation.
I0328 19:29:56.949466 2532 net.cpp:226] ip1 needs backward computation.
I0328 19:29:56.949470 2532 net.cpp:226] pool2 needs backward computation.
I0328 19:29:56.949475 2532 net.cpp:226] conv2 needs backward computation.
I0328 19:29:56.949477 2532 net.cpp:226] pool1 needs backward computation.
I0328 19:29:56.949481 2532 net.cpp:226] conv1 needs backward computation.
I0328 19:29:56.949486 2532 net.cpp:228] label_mnist_1_split does not need backward computation.
I0328 19:29:56.949489 2532 net.cpp:228] mnist does not need backward computation.
I0328 19:29:56.949493 2532 net.cpp:270] This network produces output accuracy //产生的输出项
I0328 19:29:56.949497 2532 net.cpp:270] This network produces output loss
I0328 19:29:56.949509 2532 net.cpp:283] Network initialization done.
I0328 19:29:56.949560 2532 solver.cpp:60] Solver scaffolding done.
I0328 19:29:56.949872 2532 caffe.cpp:251] Starting Optimization
I0328 19:29:56.949880 2532 solver.cpp:279] Solving LeNet
I0328 19:29:56.949884 2532 solver.cpp:280] Learning Rate Policy: inv
I0328 19:29:56.959205 2532 solver.cpp:337] Iteration 0, Testing net (#0)
I0328 19:29:56.988761 2532 blocking_queue.cpp:50] Data layer prefetch queue empty //4.迭代训练,间隔显示损失和准确率,在训练模型时,认真分析损失变化,从而调整优化策略。
I0328 19:29:57.231995 2532 solver.cpp:404] Test net output #0: accuracy = 0.1154
I0328 19:29:57.232029 2532 solver.cpp:404] Test net output #1: loss = 2.37092 (* 1 = 2.37092 loss)
I0328 19:29:57.240805 2532 solver.cpp:228] Iteration 0, loss = 2.39021
I0328 19:29:57.240828 2532 solver.cpp:244] Train net output #0: loss = 2.39021 (* 1 = 2.39021 loss)
I0328 19:29:57.240839 2532 sgd_solver.cpp:106] Iteration 0, lr = 0.01
I0328 19:29:57.475751 2532 solver.cpp:228] Iteration 100, loss = 0.206771
I0328 19:29:57.475790 2532 solver.cpp:244] Train net output #0: loss = 0.206771 (* 1 = 0.206771 loss)
I0328 19:29:57.475797 2532 sgd_solver.cpp:106] Iteration 100, lr = 0.00992565
I0328 19:29:57.745872 2532 solver.cpp:228] Iteration 200, loss = 0.153808
I0328 19:29:57.745905 2532 solver.cpp:244] Train net output #0: loss = 0.153808 (* 1 = 0.153808 loss)
I0328 19:29:57.745911 2532 sgd_solver.cpp:106] Iteration 200, lr = 0.00985258
I0328 19:29:58.021584 2532 solver.cpp:228] Iteration 300, loss = 0.154549
I0328 19:29:58.021610 2532 solver.cpp:244] Train net output #0: loss = 0.154549 (* 1 = 0.154549 loss)
I0328 19:29:58.021615 2532 sgd_solver.cpp:106] Iteration 300, lr = 0.00978075
I0328 19:29:58.360554 2532 solver.cpp:228] Iteration 400, loss = 0.101197
I0328 19:29:58.360581 2532 solver.cpp:244] Train net output #0: loss = 0.101197 (* 1 = 0.101197 loss)
I0328 19:29:58.360587 2532 sgd_solver.cpp:106] Iteration 400, lr = 0.00971013
I0328 19:29:58.680503 2532 solver.cpp:337] Iteration 500, Testing net (#0)
I0328 19:29:58.895654 2532 solver.cpp:404] Test net output #0: accuracy = 0.9729
I0328 19:29:58.895684 2532 solver.cpp:404] Test net output #1: loss = 0.082479 (* 1 = 0.082479 loss)
I0328 19:29:58.897418 2532 solver.cpp:228] Iteration 500, loss = 0.0777072
I0328 19:29:58.897434 2532 solver.cpp:244] Train net output #0: loss = 0.0777071 (* 1 = 0.0777071 loss)
I0328 19:29:58.897440 2532 sgd_solver.cpp:106] Iteration 500, lr = 0.00964069
I0328 19:29:59.173388 2532 solver.cpp:228] Iteration 600, loss = 0.0892218
I0328 19:29:59.173415 2532 solver.cpp:244] Train net output #0: loss = 0.0892217 (* 1 = 0.0892217 loss)
I0328 19:29:59.173439 2532 sgd_solver.cpp:106] Iteration 600, lr = 0.0095724
I0328 19:29:59.461107 2532 solver.cpp:228] Iteration 700, loss = 0.1191
I0328 19:29:59.461135 2532 solver.cpp:244] Train net output #0: loss = 0.1191 (* 1 = 0.1191 loss)
I0328 19:29:59.461141 2532 sgd_solver.cpp:106] Iteration 700, lr = 0.00950522
I0328 19:29:59.829005 2532 solver.cpp:228] Iteration 800, loss = 0.19133
I0328 19:29:59.829032 2532 solver.cpp:244] Train net output #0: loss = 0.19133 (* 1 = 0.19133 loss)
I0328 19:29:59.829038 2532 sgd_solver.cpp:106] Iteration 800, lr = 0.00943913
I0328 19:30:00.101406 2532 solver.cpp:228] Iteration 900, loss = 0.114087
I0328 19:30:00.101433 2532 solver.cpp:244] Train net output #0: loss = 0.114086 (* 1 = 0.114086 loss)
I0328 19:30:00.101438 2532 sgd_solver.cpp:106] Iteration 900, lr = 0.00937411
I0328 19:30:00.382973 2532 solver.cpp:337] Iteration 1000, Testing net (#0)
I0328 19:30:00.687139 2532 solver.cpp:404] Test net output #0: accuracy = 0.9808
I0328 19:30:00.687172 2532 solver.cpp:404] Test net output #1: loss = 0.0591782 (* 1 = 0.0591782 loss)
I0328 19:30:00.687955 2532 solver.cpp:228] Iteration 1000, loss = 0.0818747
I0328 19:30:00.687976 2532 solver.cpp:244] Train net output #0: loss = 0.0818747 (* 1 = 0.0818747 loss)
I0328 19:30:00.687988 2532 sgd_solver.cpp:106] Iteration 1000, lr = 0.00931012
I0328 19:30:00.936879 2532 solver.cpp:228] Iteration 1100, loss = 0.00642876
I0328 19:30:00.936911 2532 solver.cpp:244] Train net output #0: loss = 0.00642875 (* 1 = 0.00642875 loss)
I0328 19:30:00.936918 2532 sgd_solver.cpp:106] Iteration 1100, lr = 0.00924715
I0328 19:30:01.289203 2532 solver.cpp:228] Iteration 1200, loss = 0.0171346
I0328 19:30:01.289229 2532 solver.cpp:244] Train net output #0: loss = 0.0171346 (* 1 = 0.0171346 loss)
I0328 19:30:01.289237 2532 sgd_solver.cpp:106] Iteration 1200, lr = 0.00918515
I0328 19:30:01.469744 2532 solver.cpp:228] Iteration 1300, loss = 0.0239783
I0328 19:30:01.469771 2532 solver.cpp:244] Train net output #0: loss = 0.0239783 (* 1 = 0.0239783 loss)
I0328 19:30:01.469777 2532 sgd_solver.cpp:106] Iteration 1300, lr = 0.00912412
I0328 19:30:01.880422 2532 solver.cpp:228] Iteration 1400, loss = 0.00648484
I0328 19:30:01.880453 2532 solver.cpp:244] Train net output #0: loss = 0.00648486 (* 1 = 0.00648486 loss)
I0328 19:30:01.880460 2532 sgd_solver.cpp:106] Iteration 1400, lr = 0.00906403
I0328 19:30:02.138612 2532 solver.cpp:337] Iteration 1500, Testing net (#0)
I0328 19:30:02.252620 2532 solver.cpp:404] Test net output #0: accuracy = 0.9849
I0328 19:30:02.252650 2532 solver.cpp:404] Test net output #1: loss = 0.0498796 (* 1 = 0.0498796 loss)
I0328 19:30:02.253329 2532 solver.cpp:228] Iteration 1500, loss = 0.0982655
I0328 19:30:02.253347 2532 solver.cpp:244] Train net output #0: loss = 0.0982655 (* 1 = 0.0982655 loss)
I0328 19:30:02.253357 2532 sgd_solver.cpp:106] Iteration 1500, lr = 0.00900485
I0328 19:30:02.655040 2532 solver.cpp:228] Iteration 1600, loss = 0.0899513
I0328 19:30:02.655071 2532 solver.cpp:244] Train net output #0: loss = 0.0899513 (* 1 = 0.0899513 loss)
I0328 19:30:02.655076 2532 sgd_solver.cpp:106] Iteration 1600, lr = 0.00894657
I0328 19:30:02.952224 2532 solver.cpp:228] Iteration 1700, loss = 0.054807
I0328 19:30:02.952253 2532 solver.cpp:244] Train net output #0: loss = 0.054807 (* 1 = 0.054807 loss)
I0328 19:30:02.952260 2532 sgd_solver.cpp:106] Iteration 1700, lr = 0.00888916
I0328 19:30:03.240932 2532 solver.cpp:228] Iteration 1800, loss = 0.0204677
I0328 19:30:03.240959 2532 solver.cpp:244] Train net output #0: loss = 0.0204677 (* 1 = 0.0204677 loss)
I0328 19:30:03.240965 2532 sgd_solver.cpp:106] Iteration 1800, lr = 0.0088326
I0328 19:30:03.541123 2532 solver.cpp:228] Iteration 1900, loss = 0.103504
I0328 19:30:03.541153 2532 solver.cpp:244] Train net output #0: loss = 0.103504 (* 1 = 0.103504 loss)
I0328 19:30:03.541159 2532 sgd_solver.cpp:106] Iteration 1900, lr = 0.00877687
I0328 19:30:03.880522 2532 solver.cpp:337] Iteration 2000, Testing net (#0)
I0328 19:30:04.070771 2532 solver.cpp:404] Test net output #0: accuracy = 0.9852
I0328 19:30:04.070812 2532 solver.cpp:404] Test net output #1: loss = 0.045745 (* 1 = 0.045745 loss)
I0328 19:30:04.071465 2532 solver.cpp:228] Iteration 2000, loss = 0.00839915
I0328 19:30:04.071482 2532 solver.cpp:244] Train net output #0: loss = 0.0083991 (* 1 = 0.0083991 loss)
I0328 19:30:04.071492 2532 sgd_solver.cpp:106] Iteration 2000, lr = 0.00872196
I0328 19:30:04.465675 2532 solver.cpp:228] Iteration 2100, loss = 0.0168364
I0328 19:30:04.465709 2532 solver.cpp:244] Train net output #0: loss = 0.0168364 (* 1 = 0.0168364 loss)
I0328 19:30:04.465715 2532 sgd_solver.cpp:106] Iteration 2100, lr = 0.00866784
I0328 19:30:04.743353 2532 solver.cpp:228] Iteration 2200, loss = 0.0197616
I0328 19:30:04.743382 2532 solver.cpp:244] Train net output #0: loss = 0.0197616 (* 1 = 0.0197616 loss)
I0328 19:30:04.743388 2532 sgd_solver.cpp:106] Iteration 2200, lr = 0.0086145
I0328 19:30:05.105345 2532 solver.cpp:228] Iteration 2300, loss = 0.120333
I0328 19:30:05.105376 2532 solver.cpp:244] Train net output #0: loss = 0.120333 (* 1 = 0.120333 loss)
I0328 19:30:05.105381 2532 sgd_solver.cpp:106] Iteration 2300, lr = 0.00856192
I0328 19:30:05.432586 2532 solver.cpp:228] Iteration 2400, loss = 0.00913988
I0328 19:30:05.432612 2532 solver.cpp:244] Train net output #0: loss = 0.00913991 (* 1 = 0.00913991 loss)
I0328 19:30:05.432618 2532 sgd_solver.cpp:106] Iteration 2400, lr = 0.00851008
I0328 19:30:05.698125 2532 solver.cpp:337] Iteration 2500, Testing net (#0)
I0328 19:30:05.967391 2532 solver.cpp:404] Test net output #0: accuracy = 0.9853
I0328 19:30:05.967422 2532 solver.cpp:404] Test net output #1: loss = 0.0449315 (* 1 = 0.0449315 loss)
I0328 19:30:05.968067 2532 solver.cpp:228] Iteration 2500, loss = 0.0278854
I0328 19:30:05.968124 2532 solver.cpp:244] Train net output #0: loss = 0.0278855 (* 1 = 0.0278855 loss)
I0328 19:30:05.968142 2532 sgd_solver.cpp:106] Iteration 2500, lr = 0.00845897
I0328 19:30:06.310573 2532 solver.cpp:228] Iteration 2600, loss = 0.0675696
I0328 19:30:06.310596 2532 solver.cpp:244] Train net output #0: loss = 0.0675697 (* 1 = 0.0675697 loss)
I0328 19:30:06.310601 2532 sgd_solver.cpp:106] Iteration 2600, lr = 0.00840857
I0328 19:30:06.621161 2532 solver.cpp:228] Iteration 2700, loss = 0.0571786
I0328 19:30:06.621192 2532 solver.cpp:244] Train net output #0: loss = 0.0571786 (* 1 = 0.0571786 loss)
I0328 19:30:06.621198 2532 sgd_solver.cpp:106] Iteration 2700, lr = 0.00835886
I0328 19:30:06.932826 2532 solver.cpp:228] Iteration 2800, loss = 0.00218287
I0328 19:30:06.932857 2532 solver.cpp:244] Train net output #0: loss = 0.00218293 (* 1 = 0.00218293 loss)
I0328 19:30:06.932862 2532 sgd_solver.cpp:106] Iteration 2800, lr = 0.00830984
I0328 19:30:07.302281 2532 solver.cpp:228] Iteration 2900, loss = 0.0162561
I0328 19:30:07.302306 2532 solver.cpp:244] Train net output #0: loss = 0.0162562 (* 1 = 0.0162562 loss)
I0328 19:30:07.302312 2532 sgd_solver.cpp:106] Iteration 2900, lr = 0.00826148
I0328 19:30:07.637953 2532 solver.cpp:337] Iteration 3000, Testing net (#0)
I0328 19:30:07.763232 2532 solver.cpp:404] Test net output #0: accuracy = 0.9873
I0328 19:30:07.763263 2532 solver.cpp:404] Test net output #1: loss = 0.0394564 (* 1 = 0.0394564 loss)
I0328 19:30:07.763948 2532 solver.cpp:228] Iteration 3000, loss = 0.0267792
I0328 19:30:07.763967 2532 solver.cpp:244] Train net output #0: loss = 0.0267792 (* 1 = 0.0267792 loss)
I0328 19:30:07.763974 2532 sgd_solver.cpp:106] Iteration 3000, lr = 0.00821377
I0328 19:30:08.113940 2532 solver.cpp:228] Iteration 3100, loss = 0.0351026
I0328 19:30:08.113967 2532 solver.cpp:244] Train net output #0: loss = 0.0351026 (* 1 = 0.0351026 loss)
I0328 19:30:08.113973 2532 sgd_solver.cpp:106] Iteration 3100, lr = 0.0081667
I0328 19:30:08.438076 2532 solver.cpp:228] Iteration 3200, loss = 0.005196
I0328 19:30:08.438118 2532 solver.cpp:244] Train net output #0: loss = 0.00519604 (* 1 = 0.00519604 loss)
I0328 19:30:08.438125 2532 sgd_solver.cpp:106] Iteration 3200, lr = 0.00812025
I0328 19:30:08.784456 2532 solver.cpp:228] Iteration 3300, loss = 0.0158769
I0328 19:30:08.784492 2532 solver.cpp:244] Train net output #0: loss = 0.015877 (* 1 = 0.015877 loss)
I0328 19:30:08.784498 2532 sgd_solver.cpp:106] Iteration 3300, lr = 0.00807442
I0328 19:30:09.133947 2532 solver.cpp:228] Iteration 3400, loss = 0.00985796
I0328 19:30:09.133976 2532 solver.cpp:244] Train net output #0: loss = 0.00985805 (* 1 = 0.00985805 loss)
I0328 19:30:09.133982 2532 sgd_solver.cpp:106] Iteration 3400, lr = 0.00802918
I0328 19:30:09.482678 2532 solver.cpp:337] Iteration 3500, Testing net (#0)
I0328 19:30:09.572296 2532 solver.cpp:404] Test net output #0: accuracy = 0.986
I0328 19:30:09.572324 2532 solver.cpp:404] Test net output #1: loss = 0.0410168 (* 1 = 0.0410168 loss)
I0328 19:30:09.572965 2532 solver.cpp:228] Iteration 3500, loss = 0.00439527
I0328 19:30:09.572983 2532 solver.cpp:244] Train net output #0: loss = 0.00439534 (* 1 = 0.00439534 loss)
I0328 19:30:09.572993 2532 sgd_solver.cpp:106] Iteration 3500, lr = 0.00798454
I0328 19:30:09.887393 2532 solver.cpp:228] Iteration 3600, loss = 0.0321529
I0328 19:30:09.887418 2532 solver.cpp:244] Train net output #0: loss = 0.032153 (* 1 = 0.032153 loss)
I0328 19:30:09.887423 2532 sgd_solver.cpp:106] Iteration 3600, lr = 0.00794046
I0328 19:30:10.260455 2532 solver.cpp:228] Iteration 3700, loss = 0.0248466
I0328 19:30:10.260483 2532 solver.cpp:244] Train net output #0: loss = 0.0248467 (* 1 = 0.0248467 loss)
I0328 19:30:10.260488 2532 sgd_solver.cpp:106] Iteration 3700, lr = 0.00789695
I0328 19:30:10.555737 2532 solver.cpp:228] Iteration 3800, loss = 0.0137009
I0328 19:30:10.555765 2532 solver.cpp:244] Train net output #0: loss = 0.013701 (* 1 = 0.013701 loss)
I0328 19:30:10.555771 2532 sgd_solver.cpp:106] Iteration 3800, lr = 0.007854
I0328 19:30:10.835341 2532 solver.cpp:228] Iteration 3900, loss = 0.0318391
I0328 19:30:10.835364 2532 solver.cpp:244] Train net output #0: loss = 0.0318392 (* 1 = 0.0318392 loss)
I0328 19:30:10.835371 2532 sgd_solver.cpp:106] Iteration 3900, lr = 0.00781158
I0328 19:30:11.183924 2532 solver.cpp:337] Iteration 4000, Testing net (#0)
I0328 19:30:11.441587 2532 solver.cpp:404] Test net output #0: accuracy = 0.9894
I0328 19:30:11.441617 2532 solver.cpp:404] Test net output #1: loss = 0.0301995 (* 1 = 0.0301995 loss)
I0328 19:30:11.443146 2532 solver.cpp:228] Iteration 4000, loss = 0.0141343
I0328 19:30:11.443162 2532 solver.cpp:244] Train net output #0: loss = 0.0141344 (* 1 = 0.0141344 loss)
I0328 19:30:11.443169 2532 sgd_solver.cpp:106] Iteration 4000, lr = 0.0077697
I0328 19:30:11.760010 2532 solver.cpp:228] Iteration 4100, loss = 0.028197
I0328 19:30:11.760037 2532 solver.cpp:244] Train net output #0: loss = 0.0281971 (* 1 = 0.0281971 loss)
I0328 19:30:11.760042 2532 sgd_solver.cpp:106] Iteration 4100, lr = 0.00772833
I0328 19:30:12.089447 2532 solver.cpp:228] Iteration 4200, loss = 0.0129877
I0328 19:30:12.089474 2532 solver.cpp:244] Train net output #0: loss = 0.0129878 (* 1 = 0.0129878 loss)
I0328 19:30:12.089480 2532 sgd_solver.cpp:106] Iteration 4200, lr = 0.00768748
I0328 19:30:12.419196 2532 solver.cpp:228] Iteration 4300, loss = 0.0536625
I0328 19:30:12.419226 2532 solver.cpp:244] Train net output #0: loss = 0.0536626 (* 1 = 0.0536626 loss)
I0328 19:30:12.419234 2532 sgd_solver.cpp:106] Iteration 4300, lr = 0.00764712
I0328 19:30:12.741686 2532 solver.cpp:228] Iteration 4400, loss = 0.0169241
I0328 19:30:12.741713 2532 solver.cpp:244] Train net output #0: loss = 0.0169241 (* 1 = 0.0169241 loss)
I0328 19:30:12.741719 2532 sgd_solver.cpp:106] Iteration 4400, lr = 0.00760726
I0328 19:30:13.040231 2532 solver.cpp:337] Iteration 4500, Testing net (#0)
I0328 19:30:13.313794 2532 solver.cpp:404] Test net output #0: accuracy = 0.9887
I0328 19:30:13.313845 2532 solver.cpp:404] Test net output #1: loss = 0.0350937 (* 1 = 0.0350937 loss)
I0328 19:30:13.320554 2532 solver.cpp:228] Iteration 4500, loss = 0.00435573
I0328 19:30:13.320571 2532 solver.cpp:244] Train net output #0: loss = 0.00435581 (* 1 = 0.00435581 loss)
I0328 19:30:13.320578 2532 sgd_solver.cpp:106] Iteration 4500, lr = 0.00756788
I0328 19:30:13.559696 2532 solver.cpp:228] Iteration 4600, loss = 0.0101214
I0328 19:30:13.559728 2532 solver.cpp:244] Train net output #0: loss = 0.0101214 (* 1 = 0.0101214 loss)
I0328 19:30:13.559734 2532 sgd_solver.cpp:106] Iteration 4600, lr = 0.00752897
I0328 19:30:13.822892 2532 solver.cpp:228] Iteration 4700, loss = 0.00430396
I0328 19:30:13.822914 2532 solver.cpp:244] Train net output #0: loss = 0.00430407 (* 1 = 0.00430407 loss)
I0328 19:30:13.822921 2532 sgd_solver.cpp:106] Iteration 4700, lr = 0.00749052
I0328 19:30:14.203470 2532 solver.cpp:228] Iteration 4800, loss = 0.0106281
I0328 19:30:14.203496 2532 solver.cpp:244] Train net output #0: loss = 0.0106282 (* 1 = 0.0106282 loss)
I0328 19:30:14.203502 2532 sgd_solver.cpp:106] Iteration 4800, lr = 0.00745253
I0328 19:30:14.508708 2532 solver.cpp:228] Iteration 4900, loss = 0.00375433
I0328 19:30:14.508735 2532 solver.cpp:244] Train net output #0: loss = 0.00375442 (* 1 = 0.00375442 loss)
I0328 19:30:14.508741 2532 sgd_solver.cpp:106] Iteration 4900, lr = 0.00741498
I0328 19:30:14.822150 2532 solver.cpp:454] Snapshotting to binary proto file examples/mnist/lenet_iter_5000.caffemodel
I0328 19:30:14.837585 2532 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_5000.solverstate
I0328 19:30:14.841120 2532 solver.cpp:337] Iteration 5000, Testing net (#0)
I0328 19:30:15.091706 2532 solver.cpp:404] Test net output #0: accuracy = 0.9903
I0328 19:30:15.091737 2532 solver.cpp:404] Test net output #1: loss = 0.0307095 (* 1 = 0.0307095 loss)
I0328 19:30:15.093008 2532 solver.cpp:228] Iteration 5000, loss = 0.0260099
I0328 19:30:15.093024 2532 solver.cpp:244] Train net output #0: loss = 0.02601 (* 1 = 0.02601 loss)
I0328 19:30:15.093031 2532 sgd_solver.cpp:106] Iteration 5000, lr = 0.00737788
I0328 19:30:15.422441 2532 solver.cpp:228] Iteration 5100, loss = 0.0213667
I0328 19:30:15.422472 2532 solver.cpp:244] Train net output #0: loss = 0.0213668 (* 1 = 0.0213668 loss)
I0328 19:30:15.422478 2532 sgd_solver.cpp:106] Iteration 5100, lr = 0.0073412
I0328 19:30:15.701787 2532 solver.cpp:228] Iteration 5200, loss = 0.00483817
I0328 19:30:15.701822 2532 solver.cpp:244] Train net output #0: loss = 0.00483824 (* 1 = 0.00483824 loss)
I0328 19:30:15.701829 2532 sgd_solver.cpp:106] Iteration 5200, lr = 0.00730495
I0328 19:30:16.080499 2532 solver.cpp:228] Iteration 5300, loss = 0.0020156
I0328 19:30:16.080528 2532 solver.cpp:244] Train net output #0: loss = 0.00201567 (* 1 = 0.00201567 loss)
I0328 19:30:16.080533 2532 sgd_solver.cpp:106] Iteration 5300, lr = 0.00726911
I0328 19:30:16.414523 2532 solver.cpp:228] Iteration 5400, loss = 0.00957809
I0328 19:30:16.414553 2532 solver.cpp:244] Train net output #0: loss = 0.00957815 (* 1 = 0.00957815 loss)
I0328 19:30:16.414564 2532 sgd_solver.cpp:106] Iteration 5400, lr = 0.00723368
I0328 19:30:16.679096 2532 solver.cpp:337] Iteration 5500, Testing net (#0)
I0328 19:30:16.878810 2532 solver.cpp:404] Test net output #0: accuracy = 0.9893
I0328 19:30:16.878842 2532 solver.cpp:404] Test net output #1: loss = 0.0330626 (* 1 = 0.0330626 loss)
I0328 19:30:16.879482 2532 solver.cpp:228] Iteration 5500, loss = 0.0127852
I0328 19:30:16.879499 2532 solver.cpp:244] Train net output #0: loss = 0.0127853 (* 1 = 0.0127853 loss)
I0328 19:30:16.879514 2532 sgd_solver.cpp:106] Iteration 5500, lr = 0.00719865
I0328 19:30:17.240479 2532 solver.cpp:228] Iteration 5600, loss = 0.000462517
I0328 19:30:17.240510 2532 solver.cpp:244] Train net output #0: loss = 0.000462563 (* 1 = 0.000462563 loss)
I0328 19:30:17.240519 2532 sgd_solver.cpp:106] Iteration 5600, lr = 0.00716402
I0328 19:30:17.475414 2532 solver.cpp:228] Iteration 5700, loss = 0.00424558
I0328 19:30:17.475450 2532 solver.cpp:244] Train net output #0: loss = 0.00424562 (* 1 = 0.00424562 loss)
I0328 19:30:17.475456 2532 sgd_solver.cpp:106] Iteration 5700, lr = 0.00712977
I0328 19:30:17.748229 2532 solver.cpp:228] Iteration 5800, loss = 0.0215939
I0328 19:30:17.748252 2532 solver.cpp:244] Train net output #0: loss = 0.0215939 (* 1 = 0.0215939 loss)
I0328 19:30:17.748257 2532 sgd_solver.cpp:106] Iteration 5800, lr = 0.0070959
I0328 19:30:17.975960 2532 solver.cpp:228] Iteration 5900, loss = 0.00649087
I0328 19:30:17.975985 2532 solver.cpp:244] Train net output #0: loss = 0.00649091 (* 1 = 0.00649091 loss)
I0328 19:30:17.975989 2532 sgd_solver.cpp:106] Iteration 5900, lr = 0.0070624
I0328 19:30:18.324182 2532 solver.cpp:337] Iteration 6000, Testing net (#0)
I0328 19:30:18.554812 2532 solver.cpp:404] Test net output #0: accuracy = 0.991
I0328 19:30:18.554846 2532 solver.cpp:404] Test net output #1: loss = 0.0282955 (* 1 = 0.0282955 loss)
I0328 19:30:18.559497 2532 solver.cpp:228] Iteration 6000, loss = 0.00446534
I0328 19:30:18.559514 2532 solver.cpp:244] Train net output #0: loss = 0.00446538 (* 1 = 0.00446538 loss)
I0328 19:30:18.559521 2532 sgd_solver.cpp:106] Iteration 6000, lr = 0.00702927
I0328 19:30:18.812295 2532 solver.cpp:228] Iteration 6100, loss = 0.00131822
I0328 19:30:18.812326 2532 solver.cpp:244] Train net output #0: loss = 0.00131824 (* 1 = 0.00131824 loss)
I0328 19:30:18.812331 2532 sgd_solver.cpp:106] Iteration 6100, lr = 0.0069965
I0328 19:30:19.161257 2532 solver.cpp:228] Iteration 6200, loss = 0.00702568
I0328 19:30:19.161283 2532 solver.cpp:244] Train net output #0: loss = 0.00702571 (* 1 = 0.00702571 loss)
I0328 19:30:19.161288 2532 sgd_solver.cpp:106] Iteration 6200, lr = 0.00696408
I0328 19:30:19.425575 2532 solver.cpp:228] Iteration 6300, loss = 0.00910935
I0328 19:30:19.425602 2532 solver.cpp:244] Train net output #0: loss = 0.00910939 (* 1 = 0.00910939 loss)
I0328 19:30:19.425608 2532 sgd_solver.cpp:106] Iteration 6300, lr = 0.00693201
I0328 19:30:19.752600 2532 solver.cpp:228] Iteration 6400, loss = 0.00992414
I0328 19:30:19.752626 2532 solver.cpp:244] Train net output #0: loss = 0.00992417 (* 1 = 0.00992417 loss)
I0328 19:30:19.752634 2532 sgd_solver.cpp:106] Iteration 6400, lr = 0.00690029
I0328 19:30:20.022999 2532 solver.cpp:337] Iteration 6500, Testing net (#0)
I0328 19:30:20.311820 2532 solver.cpp:404] Test net output #0: accuracy = 0.9903
I0328 19:30:20.311849 2532 solver.cpp:404] Test net output #1: loss = 0.0293131 (* 1 = 0.0293131 loss)
I0328 19:30:20.312511 2532 solver.cpp:228] Iteration 6500, loss = 0.00896712
I0328 19:30:20.312536 2532 solver.cpp:244] Train net output #0: loss = 0.00896714 (* 1 = 0.00896714 loss)
I0328 19:30:20.312548 2532 sgd_solver.cpp:106] Iteration 6500, lr = 0.0068689
I0328 19:30:20.579493 2532 solver.cpp:228] Iteration 6600, loss = 0.0157276
I0328 19:30:20.579521 2532 solver.cpp:244] Train net output #0: loss = 0.0157276 (* 1 = 0.0157276 loss)
I0328 19:30:20.579527 2532 sgd_solver.cpp:106] Iteration 6600, lr = 0.00683784
I0328 19:30:20.855541 2532 solver.cpp:228] Iteration 6700, loss = 0.0125102
I0328 19:30:20.855573 2532 solver.cpp:244] Train net output #0: loss = 0.0125102 (* 1 = 0.0125102 loss)
I0328 19:30:20.855584 2532 sgd_solver.cpp:106] Iteration 6700, lr = 0.00680711
I0328 19:30:21.220584 2532 solver.cpp:228] Iteration 6800, loss = 0.00361601
I0328 19:30:21.220610 2532 solver.cpp:244] Train net output #0: loss = 0.00361603 (* 1 = 0.00361603 loss)
I0328 19:30:21.220615 2532 sgd_solver.cpp:106] Iteration 6800, lr = 0.0067767
I0328 19:30:21.520323 2532 solver.cpp:228] Iteration 6900, loss = 0.00433482
I0328 19:30:21.520347 2532 solver.cpp:244] Train net output #0: loss = 0.00433484 (* 1 = 0.00433484 loss)
I0328 19:30:21.520352 2532 sgd_solver.cpp:106] Iteration 6900, lr = 0.0067466
I0328 19:30:21.834478 2532 solver.cpp:337] Iteration 7000, Testing net (#0)
I0328 19:30:22.067176 2532 solver.cpp:404] Test net output #0: accuracy = 0.9902
I0328 19:30:22.067207 2532 solver.cpp:404] Test net output #1: loss = 0.030529 (* 1 = 0.030529 loss)
I0328 19:30:22.068749 2532 solver.cpp:228] Iteration 7000, loss = 0.00761897
I0328 19:30:22.068766 2532 solver.cpp:244] Train net output #0: loss = 0.00761899 (* 1 = 0.00761899 loss)
I0328 19:30:22.068774 2532 sgd_solver.cpp:106] Iteration 7000, lr = 0.00671681
I0328 19:30:22.335480 2532 solver.cpp:228] Iteration 7100, loss = 0.0149167
I0328 19:30:22.335510 2532 solver.cpp:244] Train net output #0: loss = 0.0149167 (* 1 = 0.0149167 loss)
I0328 19:30:22.335517 2532 sgd_solver.cpp:106] Iteration 7100, lr = 0.00668733
I0328 19:30:22.615579 2532 solver.cpp:228] Iteration 7200, loss = 0.00389583
I0328 19:30:22.615602 2532 solver.cpp:244] Train net output #0: loss = 0.00389585 (* 1 = 0.00389585 loss)
I0328 19:30:22.615608 2532 sgd_solver.cpp:106] Iteration 7200, lr = 0.00665815
I0328 19:30:22.965278 2532 solver.cpp:228] Iteration 7300, loss = 0.017772
I0328 19:30:22.965302 2532 solver.cpp:244] Train net output #0: loss = 0.0177721 (* 1 = 0.0177721 loss)
I0328 19:30:22.965307 2532 sgd_solver.cpp:106] Iteration 7300, lr = 0.00662927
I0328 19:30:23.275080 2532 solver.cpp:228] Iteration 7400, loss = 0.00495408
I0328 19:30:23.275108 2532 solver.cpp:244] Train net output #0: loss = 0.00495411 (* 1 = 0.00495411 loss)
I0328 19:30:23.275115 2532 sgd_solver.cpp:106] Iteration 7400, lr = 0.00660067
I0328 19:30:23.553067 2532 solver.cpp:337] Iteration 7500, Testing net (#0)
I0328 19:30:23.777024 2532 solver.cpp:404] Test net output #0: accuracy = 0.9906
I0328 19:30:23.777057 2532 solver.cpp:404] Test net output #1: loss = 0.03123 (* 1 = 0.03123 loss)
I0328 19:30:23.777698 2532 solver.cpp:228] Iteration 7500, loss = 0.00159795
I0328 19:30:23.777717 2532 solver.cpp:244] Train net output #0: loss = 0.00159798 (* 1 = 0.00159798 loss)
I0328 19:30:23.777742 2532 sgd_solver.cpp:106] Iteration 7500, lr = 0.00657236
I0328 19:30:24.157346 2532 solver.cpp:228] Iteration 7600, loss = 0.00589341
I0328 19:30:24.157387 2532 solver.cpp:244] Train net output #0: loss = 0.00589344 (* 1 = 0.00589344 loss)
I0328 19:30:24.157397 2532 sgd_solver.cpp:106] Iteration 7600, lr = 0.00654433
I0328 19:30:24.466545 2532 solver.cpp:228] Iteration 7700, loss = 0.0223221
I0328 19:30:24.466569 2532 solver.cpp:244] Train net output #0: loss = 0.0223222 (* 1 = 0.0223222 loss)
I0328 19:30:24.466578 2532 sgd_solver.cpp:106] Iteration 7700, lr = 0.00651658
I0328 19:30:24.835237 2532 solver.cpp:228] Iteration 7800, loss = 0.00277635
I0328 19:30:24.835269 2532 solver.cpp:244] Train net output #0: loss = 0.00277638 (* 1 = 0.00277638 loss)
I0328 19:30:24.835278 2532 sgd_solver.cpp:106] Iteration 7800, lr = 0.00648911
I0328 19:30:25.089210 2532 solver.cpp:228] Iteration 7900, loss = 0.00482228
I0328 19:30:25.089246 2532 solver.cpp:244] Train net output #0: loss = 0.00482231 (* 1 = 0.00482231 loss)
I0328 19:30:25.089257 2532 sgd_solver.cpp:106] Iteration 7900, lr = 0.0064619
I0328 19:30:25.417707 2532 solver.cpp:337] Iteration 8000, Testing net (#0)
I0328 19:30:25.569162 2532 solver.cpp:404] Test net output #0: accuracy = 0.9904
I0328 19:30:25.569203 2532 solver.cpp:404] Test net output #1: loss = 0.0293426 (* 1 = 0.0293426 loss)
I0328 19:30:25.569869 2532 solver.cpp:228] Iteration 8000, loss = 0.00810755
I0328 19:30:25.569890 2532 solver.cpp:244] Train net output #0: loss = 0.00810757 (* 1 = 0.00810757 loss)
I0328 19:30:25.569900 2532 sgd_solver.cpp:106] Iteration 8000, lr = 0.00643496
I0328 19:30:25.927444 2532 solver.cpp:228] Iteration 8100, loss = 0.0165582
I0328 19:30:25.927472 2532 solver.cpp:244] Train net output #0: loss = 0.0165582 (* 1 = 0.0165582 loss)
I0328 19:30:25.927479 2532 sgd_solver.cpp:106] Iteration 8100, lr = 0.00640827
I0328 19:30:26.248455 2532 solver.cpp:228] Iteration 8200, loss = 0.00975051
I0328 19:30:26.248497 2532 solver.cpp:244] Train net output #0: loss = 0.00975053 (* 1 = 0.00975053 loss)
I0328 19:30:26.248540 2532 sgd_solver.cpp:106] Iteration 8200, lr = 0.00638185
I0328 19:30:26.511210 2532 solver.cpp:228] Iteration 8300, loss = 0.029401
I0328 19:30:26.511242 2532 solver.cpp:244] Train net output #0: loss = 0.0294011 (* 1 = 0.0294011 loss)
I0328 19:30:26.511248 2532 sgd_solver.cpp:106] Iteration 8300, lr = 0.00635567
I0328 19:30:26.809790 2532 solver.cpp:228] Iteration 8400, loss = 0.00563668
I0328 19:30:26.809816 2532 solver.cpp:244] Train net output #0: loss = 0.0056367 (* 1 = 0.0056367 loss)
I0328 19:30:26.809823 2532 sgd_solver.cpp:106] Iteration 8400, lr = 0.00632975
I0328 19:30:27.154844 2532 solver.cpp:337] Iteration 8500, Testing net (#0)
I0328 19:30:27.456598 2532 solver.cpp:404] Test net output #0: accuracy = 0.9905
I0328 19:30:27.456629 2532 solver.cpp:404] Test net output #1: loss = 0.0287546 (* 1 = 0.0287546 loss)
I0328 19:30:27.461474 2532 solver.cpp:228] Iteration 8500, loss = 0.00753963
I0328 19:30:27.461493 2532 solver.cpp:244] Train net output #0: loss = 0.00753967 (* 1 = 0.00753967 loss)
I0328 19:30:27.461499 2532 sgd_solver.cpp:106] Iteration 8500, lr = 0.00630407
I0328 19:30:27.727741 2532 solver.cpp:228] Iteration 8600, loss = 0.000695787
I0328 19:30:27.727769 2532 solver.cpp:244] Train net output #0: loss = 0.000695824 (* 1 = 0.000695824 loss)
I0328 19:30:27.727775 2532 sgd_solver.cpp:106] Iteration 8600, lr = 0.00627864
I0328 19:30:28.052096 2532 solver.cpp:228] Iteration 8700, loss = 0.00265296
I0328 19:30:28.052125 2532 solver.cpp:244] Train net output #0: loss = 0.00265299 (* 1 = 0.00265299 loss)
I0328 19:30:28.052131 2532 sgd_solver.cpp:106] Iteration 8700, lr = 0.00625344
I0328 19:30:28.409672 2532 solver.cpp:228] Iteration 8800, loss = 0.00110993
I0328 19:30:28.409700 2532 solver.cpp:244] Train net output #0: loss = 0.00110996 (* 1 = 0.00110996 loss)
I0328 19:30:28.409706 2532 sgd_solver.cpp:106] Iteration 8800, lr = 0.00622847
I0328 19:30:28.797593 2532 solver.cpp:228] Iteration 8900, loss = 0.000595419
I0328 19:30:28.797628 2532 solver.cpp:244] Train net output #0: loss = 0.000595448 (* 1 = 0.000595448 loss)
I0328 19:30:28.797634 2532 sgd_solver.cpp:106] Iteration 8900, lr = 0.00620374
I0328 19:30:29.140872 2532 solver.cpp:337] Iteration 9000, Testing net (#0)
I0328 19:30:29.408411 2532 solver.cpp:404] Test net output #0: accuracy = 0.9905
I0328 19:30:29.408444 2532 solver.cpp:404] Test net output #1: loss = 0.0281204 (* 1 = 0.0281204 loss)
I0328 19:30:29.409649 2532 solver.cpp:228] Iteration 9000, loss = 0.0174571
I0328 19:30:29.409668 2532 solver.cpp:244] Train net output #0: loss = 0.0174571 (* 1 = 0.0174571 loss)
I0328 19:30:29.409678 2532 sgd_solver.cpp:106] Iteration 9000, lr = 0.00617924
I0328 19:30:29.710494 2532 solver.cpp:228] Iteration 9100, loss = 0.00726821
I0328 19:30:29.710525 2532 solver.cpp:244] Train net output #0: loss = 0.00726824 (* 1 = 0.00726824 loss)
I0328 19:30:29.710531 2532 sgd_solver.cpp:106] Iteration 9100, lr = 0.00615496
I0328 19:30:30.002382 2532 solver.cpp:228] Iteration 9200, loss = 0.00393138
I0328 19:30:30.002410 2532 solver.cpp:244] Train net output #0: loss = 0.00393141 (* 1 = 0.00393141 loss)
I0328 19:30:30.002416 2532 sgd_solver.cpp:106] Iteration 9200, lr = 0.0061309
I0328 19:30:30.388334 2532 solver.cpp:228] Iteration 9300, loss = 0.00772397
I0328 19:30:30.388365 2532 solver.cpp:244] Train net output #0: loss = 0.007724 (* 1 = 0.007724 loss)
I0328 19:30:30.388375 2532 sgd_solver.cpp:106] Iteration 9300, lr = 0.00610706
I0328 19:30:30.760013 2532 solver.cpp:228] Iteration 9400, loss = 0.0255712
I0328 19:30:30.760044 2532 solver.cpp:244] Train net output #0: loss = 0.0255713 (* 1 = 0.0255713 loss)
I0328 19:30:30.760052 2532 sgd_solver.cpp:106] Iteration 9400, lr = 0.00608343
I0328 19:30:31.048245 2532 solver.cpp:337] Iteration 9500, Testing net (#0)
I0328 19:30:31.287348 2532 solver.cpp:404] Test net output #0: accuracy = 0.9889
I0328 19:30:31.287376 2532 solver.cpp:404] Test net output #1: loss = 0.0341572 (* 1 = 0.0341572 loss)
I0328 19:30:31.288060 2532 solver.cpp:228] Iteration 9500, loss = 0.00328411
I0328 19:30:31.288081 2532 solver.cpp:244] Train net output #0: loss = 0.00328414 (* 1 = 0.00328414 loss)
I0328 19:30:31.288089 2532 sgd_solver.cpp:106] Iteration 9500, lr = 0.00606002
I0328 19:30:31.623594 2532 solver.cpp:228] Iteration 9600, loss = 0.00208279
I0328 19:30:31.623620 2532 solver.cpp:244] Train net output #0: loss = 0.00208282 (* 1 = 0.00208282 loss)
I0328 19:30:31.623626 2532 sgd_solver.cpp:106] Iteration 9600, lr = 0.00603682
I0328 19:30:31.921439 2532 solver.cpp:228] Iteration 9700, loss = 0.00417724
I0328 19:30:31.921464 2532 solver.cpp:244] Train net output #0: loss = 0.00417727 (* 1 = 0.00417727 loss)
I0328 19:30:31.921469 2532 sgd_solver.cpp:106] Iteration 9700, lr = 0.00601382
I0328 19:30:32.150326 2532 solver.cpp:228] Iteration 9800, loss = 0.0155305
I0328 19:30:32.150352 2532 solver.cpp:244] Train net output #0: loss = 0.0155305 (* 1 = 0.0155305 loss)
I0328 19:30:32.150362 2532 sgd_solver.cpp:106] Iteration 9800, lr = 0.00599102
I0328 19:30:32.498646 2532 solver.cpp:228] Iteration 9900, loss = 0.00393814
I0328 19:30:32.498678 2532 solver.cpp:244] Train net output #0: loss = 0.00393817 (* 1 = 0.00393817 loss)
I0328 19:30:32.498684 2532 sgd_solver.cpp:106] Iteration 9900, lr = 0.00596843
I0328 19:30:32.794668 2532 solver.cpp:454] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodel
I0328 19:30:32.799289 2532 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_10000.solverstate // 5.快照保存情况。
I0328 19:30:32.804375 2532 solver.cpp:317] Iteration 10000, loss = 0.00215722
I0328 19:30:32.804394 2532 solver.cpp:337] Iteration 10000, Testing net (#0)
I0328 19:30:33.008592 2532 solver.cpp:404] Test net output #0: accuracy = 0.9904
I0328 19:30:33.008620 2532 solver.cpp:404] Test net output #1: loss = 0.0294442 (* 1 = 0.0294442 loss)
I0328 19:30:33.008625 2532 solver.cpp:322] Optimization Done.
I0328 19:30:33.008630 2532 caffe.cpp:254] Optimization Done.