已会的排序技术

1.冒泡排序

2.简单选择排序(直接排序)

3.快速排序

4.shell排序(不太熟练)

5.归并排序(不太熟练)(对代码理解还不到位)

一:冒泡排序

算法思想: 
从数组中第一个数开始,依次遍历数组中的每一个数,通过相邻比较交换,每一轮循环下来找出剩余未排序数的中的最大数并”冒泡”至数列的顶端。

算法步骤: 
(1)从数组中第一个数开始,依次与下一个数比较并次交换比自己小的数,直到最后一个数。如果发生交换,则继续下面的步骤,如果未发生交换,则数组有序,排序结束,此时时间复杂度为O(n); 
(2)每一轮”冒泡”结束后,最大的数将出现在乱序数列的最后一位。重复步骤(1)。

稳定性:稳定排序。

时间复杂度: O(n)至O(n2),平均时间复杂度为O(n2)。

最好的情况:如果待排序数据序列为正序,则一趟冒泡就可完成排序,排序码的比较次数为n-1次,且没有移动,时间复杂度为O(n)。

最坏的情况:如果待排序数据序列为逆序,则冒泡排序需要n-1次趟起泡,每趟进行n-i次排序码的比较和移动,即比较和移动次数均达到最大值: 
比较次数:Cmax=∑i=1n−1(n−i)=n(n−1)/2=O(n2) 
移动次数等于比较次数,因此最坏时间复杂度为O(n2)。

示例代码:

void bubbleSort(int array[],int len){
    //循环的次数为数组长度减一,剩下的一个数不需要排序
    for(int i=0;i<len-1;++i){
        bool noswap=true;
        //循环次数为待排序数第一位数冒泡至最高位的比较次数
        for(int j=0;j<len-i-1;++j){
            if(array[j]>array[j+1]){
                array[j]=array[j]+array[j+1];
                array[j+1]=array[j]-array[j+1];
                array[j]=array[j]-array[j+1];
                //交换或者使用如下方式
                //a=a^b;
                //b=b^a;
                //a=a^b;
                noswap=false;
            }
        }
        if(noswap) break;
    }
}

 二.简单选择排序

原理:从所有记录中选出最小的一个数据元素与第一个位置的记录交换;然后在剩下的记录当中再找最小的与第二个位置的记录交换,循环到只剩下最后一个数据元素为止。

稳定性:不稳定排序。

时间复杂度: 最坏、最好和平均复杂度均为O(n2),因此,简单选择排序也是常见排序算法中性能最差的排序算法。简单选择排序的比较次数与文件的初始状态没有关系,在第i趟排序中选出最小排序码的记录,需要做n-i次比较,因此总的比较次数是:∑i=1n−1(n−i)=n(n−1)/2=O(n2)。

示例代码:

void selectSort(int A[],int len)
{
    int i,j,k;
    for(i=0;i<len;i++){
       k=i;
       for(j=i+1;j<len;j++){
           if(A[j]<A[k])
               k=j;
       }
       if(i!=k){
           A[i]=A[i]+A[k];
           A[k]=A[i]-A[k];
           A[i]=A[i]-A[k];
       }
    }
}

三: 快速排序

冒泡排序是在相邻的两个记录进行比较和交换,每次交换只能上移或下移一个位置,导致总的比较与移动次数较多。快速排序又称分区交换排序,是对冒泡排序的改进,快速排序采用的思想是分治思想。。

算法原理: 
(1)从待排序的n个记录中任意选取一个记录(通常选取第一个记录)为分区标准;

(2)把所有小于该排序列的记录移动到左边,把所有大于该排序码的记录移动到右边,中间放所选记录,称之为第一趟排序;

(3)然后对前后两个子序列分别重复上述过程,直到所有记录都排好序。

稳定性:不稳定排序。

时间复杂度: O(nlog2n)至O(n2),平均时间复杂度为O(nlgn)。

最好的情况:是每趟排序结束后,每次划分使两个子文件的长度大致相等,时间复杂度为O(nlog2n)。

最坏的情况:是待排序记录已经排好序,第一趟经过n-1次比较后第一个记录保持位置不变,并得到一个n-1个元素的子记录;第二趟经过n-2次比较,将第二个记录定位在原来的位置上,并得到一个包括n-2个记录的子文件,依次类推,这样总的比较次数是: 

Cmax=∑i=1n−1(n−i)=n(n−1)/2=O(n2)

 

示例代码:

//a:待排序数组,low:最低位的下标,high:最高位的下标
void quickSort(int a[],int low, int high)
{
    if(low>=high)
    {
        return;
    }
    int left=low;
    int right=high;
    int key=a[left];    /*用数组的第一个记录作为分区元素*/
    while(left!=right){
        while(left<right&&a[right]>=key)    /*从右向左扫描,找第一个码值小于key的记录,并交换到key*/
            --right;
        a[left]=a[right];
        while(left<right&&a[left]<=key)
            ++left;
        a[right]=a[left];    /*从左向右扫描,找第一个码值大于key的记录,并交换到右边*/
    }
    a[left]=key;    /*分区元素放到正确位置*/
    quickSort(a,low,left-1);
    quickSort(a,left+1,high);
}

四:shell排序

Shell 排序又称缩小增量排序, 由D. L. Shell在1959年提出,是对直接插入排序的改进。

原理: Shell排序法是对相邻指定距离(称为增量)的元素进行比较,并不断把增量缩小至1,完成排序。

Shell排序开始时增量较大,分组较多,每组的记录数目较少,故在各组内采用直接插入排序较快,后来增量di逐渐缩小,分组数减少,各组的记录数增多,但由于已经按di−1分组排序,文件叫接近于有序状态,所以新的一趟排序过程较快。因此Shell排序在效率上比直接插入排序有较大的改进。

在直接插入排序的基础上,将直接插入排序中的1全部改变成增量d即可,因为Shell排序最后一轮的增量d就为1。

稳定性:不稳定排序。

时间复杂度:O(n1.3)到O(n2)。Shell排序算法的时间复杂度分析比较复杂,实际所需的时间取决于各次排序时增量的个数和增量的取值。研究证明,若增量的取值比较合理,Shell排序算法的时间复杂度约为O(n1.3)。

对于增量的选择,Shell 最初建议增量选择为n/2,并且对增量取半直到 1;D. Knuth教授建议di+1=⌊di−13⌋序列。

//A:输入数组,len:数组长度,d:初始增量(分组数)
void shellSort(int A[],int len, int d)
{
    for(int inc=d;inc>0;inc/=2){        //循环的次数为增量缩小至1的次数
        for(int i=inc;i<len;++i){       //循环的次数为第一个分组的第二个元素到数组的结束
            int j=i-inc;
            int temp=A[i];
            while(j>=0&&A[j]>temp)
            {
                A[j+inc]=A[j];
                j=j-inc;
            }
            if((j+inc)!=i)//防止自我插入
                A[j+inc]=temp;//插入记录
        }
    }
}

注意:从代码中可以看出,增量每次变化取前一次增量的一般,当增量d等于1时,shell排序就退化成了直接插入排序了。

5、归并排序(Merge Sort)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。 

5.1 算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

5.2 动图演示

5.3 代码实现

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

function mergeSort(arr) {

    var len = arr.length;

    if (len < 2) {

        return arr;

    }

    var middle = Math.floor(len / 2),

        left = arr.slice(0, middle),

        right = arr.slice(middle);

    return merge(mergeSort(left), mergeSort(right));

}

 

function merge(left, right) {

    var result = [];

 

    while (left.length>0 && right.length>0) {

        if (left[0] <= right[0]) {

            result.push(left.shift());

        }else {

            result.push(right.shift());

        }

    }

 

    while (left.length)

        result.push(left.shift());

 

    while (right.length)

        result.push(right.shift());

 

    return result;

}

5.4 算法分析

归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值