[Hadoop]Hive r0.9.0中文文档(一)之数据操作语句

本文深入解析了Hive中创建表的方法,包括使用CREATE语句创建普通表、外部表以及使用CTAS(Create Table As Select)创建表。同时详细讲解了如何使用SerDe进行数据序列化与反序列化,以及如何通过不同的ROWFORMAT和存储格式优化数据存储。最后,介绍了桶存储表的概念及其应用,以及外部表的特性与使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[color=red]文章为原创,转载请标注文章出处,否则保留对版权的追求权力。[/color]

[size=large][b]一、创建表的语法[/b][/size]

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)]
[AS select_statement]

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
LIKE existing_table_name
[LOCATION hdfs_path]

data_type
: primitive_type
| array_type
| map_type
| struct_type

primitive_type
: TINYINT
| SMALLINT
| INT
| BIGINT
| BOOLEAN
| FLOAT
| DOUBLE
| STRING

array_type
: ARRAY < data_type >

map_type
: MAP < primitive_type, data_type >

struct_type
: STRUCT < col_name : data_type [COMMENT col_comment], ...>

row_format
: DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

file_format:
: SEQUENCEFILE
| TEXTFILE
| INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname


用已知表名创建一个表的时候,如果同名表已经存在则会报一个表已存在的异常,不过你可以使用IF NOT EXISTS来防止这个错误。

EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数 据会被一起删除,而外部表只删除元数据,不删除数据

用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。

如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。使用INPUTFROMAT 和OUTPUTFORMAT将指定输入输出的格式,例如:

'org.apache.hadoop.hive.contrib.fileformat.base64.Base64TextInputFormat'.

代表指定了表的输入格式必须的是Base64.

有分区的表可以在创建的时候使用 PARTITIONED BY 语句。一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下。而且,表和分区都可以对某个列进行 CLUSTERED BY 操作,将若干个列放入一个桶(bucket)中。也可以利用SORT BY 对数据进行排序。这样可以为特定应用提高性能。

表名和列名不区分大小写,SerDe 和属性名区分大小写。表和列的注释是字符串。

下面是创建一个表的例子:
CREATE TABLE page_view(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User')
COMMENT 'This is the page view table'
PARTITIONED BY(dt STRING, country STRING)
STORED AS SEQUENCEFILE;


创建一个page_view表,按照dt和country进行分割并有序排列。

[size=large][b]二、使用select来创建表(简称CTAS)[/b][/size]
表可以按照查询结果来进行创建,按照CTAS查询的来的表是自动的,这意味着这个表不会被其他人看见值到查询结果结束,其他人只能看见查询的来的完成结果,而不是看到这个表的全部。

CTAS语句分为2个部分,HiveQL支持SELECT部分,创建部分将会使用SELECT查询的结果,并且可以使用其他表的属性例如SerDe和存储格式来创建这个表。CTAS创建表的唯一限制是不能够创建一个分区表,也不能创建一个EXTERNAL的表。

[size=large][b]三、使用 SerDes[/b][/size]
SerDe 是 Serialize/Deserilize 的简称,目的是用于序列化和反序列化。序列化的格式包括:
• 分隔符(tab、逗号、CTRL-A)
• Thrift 协议
反序列化(内存内):
• Java Integer/String/ArrayList/HashMap
• Hadoop Writable 类
• 用户自定义类


CTAS创建如果没有指定列名那么查询得到的列名将会被自动分配为 _col0, _col1, and _col2等这样的列名。另外,新的目标表将会使用特殊的SerDe进行创建,并且存储格式与查询语句相独立。

CREATE TABLE new_key_value_store
ROW FORMAT SERDE "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe"
STORED AS RCFile AS
SELECT (key % 1024) new_key, concat(key, value) key_value_pair
FROM key_value_store
SORT BY new_key, key_value_pair;


把一个表中的数据查询出来得到另外一个表示Hive一个重要的Feature,在这个查询过程中,你可以让Hive处理将原数据格式转化为另外的一种格式。

[size=large][b]四、按BUCKET(桶)存储的表[/b][/size]

CREATE TABLE page_view(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User')
COMMENT 'This is the page view table'
PARTITIONED BY(dt STRING, country STRING)
CLUSTERED BY(userid) SORTED BY(viewTime) INTO 32 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
STORED AS SEQUENCEFILE;


上面的例子中,page_view 表按照userid进行分桶,共32个桶,数据按照viewTime进行排序。
意义在于,这样可以对数据集群按照userid做一个有效的抽样结果。排序属性可以让开发人员更好的利用已知的数据结构进行查询,当某一个列是lists或者maps类型时,还可以使用MAP KEYS 和 COLLECTION TIEMS关键字。

CLUSTERED BY 和 SORTERD BY不影响数据插入方式,只影响读取顺序。这意味着用户必须小心使用这2个命令,看看桶类型表是怎么工作的吧。

[size=large][b]五、外部表[/b][/size]
External Tables

External Table 指向已经在 HDFS 中存在的数据,可以创建 Partition。它和 Table 在元数据的组织上是相同的,而实际数据的存储则有较大的差异

CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User',
country STRING COMMENT 'country of origination')
COMMENT 'This is the staging page view table'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054'
STORED AS TEXTFILE
LOCATION '<hdfs_location>';


[size=large][b]六、使用Like来创建表[/b][/size]
like仅复制表结构,但是不复制数据

CREATE TABLE empty_key_value_store
LIKE key_value_store;


[size=large][b]七、drop[/b][/size]
删除一个内部表的同时会同时删除表的元数据和数据。删除一个外部表,只删除元数据而保留数据。
1. HIVE结构 Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了系列的工具,可以用来进行数 据提取转化加载 (ETL),这是种可以存储、 查询和分析存储在 Hadoop 中的大规模数据的 机制。 Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据。 同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理 内建的 mapper 和 reducer 无法完成的复杂的分析工作。 1.1HIVE 架构 Hive 的结构可以分为以下几部分: 用户接口:包括 CLI, Client, WUI 元数据存储。通常是存储在关系数据库如 mysql, derby 中 6 解释器、编译器、优化器、执行器 Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算 1、 用户接口主要有三个: CLI,Client 和 WUI。其中最常用的是 CLI , Cli 启动的时候, 会同时启动Hive 副本。 Client 是 Hive 的客户端,用户连接至 Hive Server 。 在启动 Client 模式的时候, 需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server 。 WUI 是通过浏览器访问 Hive 。 2、 Hive 将元数据存储在数据库中,如 mysql 、 derby 。 Hive 中的元数据包括表的名字, 表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。 3、 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及 查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。 4、 Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比 如 select * from tbl 不会生成 MapRedcue 任务)。 1.2HiveHadoop 关系 Hive 构建在 Hadoop 之上, HQL 中对查询语句的解释、优化、生成查询计划是由 Hive 完成的 所有的数据都是存储在 Hadoop 中 查询计划被转化为 MapReduce 任务,在 Hadoop 中执行(有些查询没有 MR 任 务,如: select * from table ) HadoopHive 都是用 UTF-8 编码的 7 1.3Hive 和普通关系数据库的异同 Hive RDBMS 查询语言 HQL SQL 数据存储 HDFS Raw Device or Local FS 索引 无 有 执行 MapReduce Excutor 执行延迟 高 低 处理数据规模 大 小 1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计 了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开 发。 2. 数据存储位置。 Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中 的。而数据库则可以将数据保存在块设备或者本地文件系统中。 3. 数据格式。 Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数 据格式需要指定三个属性:列分隔符(通常为空格、” t ”、” x001″)、行分隔符 (” n”)以及读取文件数据的方法( Hive 中默认有三个文件格式 TextFile , SequenceFile 以及 RCFile )。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此, Hive 在加载的过程中不会对数据本身进行任何修 改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数 据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照定的组织存储, 因此,数据库加载数据的过程会比较耗时。 4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。 因此, Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。 而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ... SET 修改数据。 5. 索引。之前已经说过, Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会 对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。 Hive 要访问数据中满足 条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引 入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问, Hive 仍然 可以体现出优势。数据库中,通常会针对个或者几个列建立索引,因此对于少量的特 定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较 高,决定了 Hive 不适合在线数据查询。 6. 执行。 Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl 的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值