HDU - 3853 LOOPS (期望dp)

在一个由R*C网格组成的迷宫中,魔法少女Homura被困,她必须从左上角到达右下角才能逃脱。每个网格包含一个传送门,将她传送到下方、右侧或原地,消耗2点魔力。任务是计算逃脱迷宫所需的预期魔力。

Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). 
Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS. 


The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)! 
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS. 
 

Input

The first line contains two integers R and C (2 <= R, C <= 1000). 

The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces. 

It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them). 
You may ignore the last three numbers of the input data. They are printed just for looking neat. 
The answer is ensured no greater than 1000000. 
Terminal at EOF 

Output

A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS. 

Sample Input

2 2
0.00 0.50 0.50    0.50 0.00 0.50
0.50 0.50 0.00    1.00 0.00 0.00

Sample Output

6.000

题目大概:
有一个n*m的矩阵,有个人想要从(1,1)从到达(n,m)。每次走一个花费2分钟。
每次从位置(i,j)走到(i,j+1),(i+1,j)或者停留在原地,都有一个概率。三者相加为1.
问最后到达(n,m)的期望时间。
思路:
dp[i][j]表示到了位置(i,j),距离到(n,m)还差的期望。
l[i][j]表示停留原地的概率,d[i][j]表示向下走的概率,r[i][j]表示向右走的概率。
得到逆推公式
dp[i][j]=l[i][j]*dp[i][j]+d[i][j]*dp[i+1][j]+r[i][j]*dp[i][j+1]+2.
化简的dp[i][j]=(+d[i][j]*dp[i+1][j]+r[i][j]*dp[i][j+1]+2)/(1-l[i][j]).

要注意初始状态(n,m)的时候还差的期望是0.

代码:

#include <bits/stdc++.h>

using namespace std;
#define ll long long
const int maxn=1e3+10;
double t[maxn][maxn];
double l[maxn][maxn],d[maxn][maxn];
double dp[maxn][maxn];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%lf%lf%lf",&t[i][j],&l[i][j],&d[i][j]);
            }
        }
        for(int i=n;i>=1;i--)
        {
            for(int j=m;j>=1;j--)
            {
                if(i==n&&j==m)continue;
                double p=1-t[i][j];
                if(p<1e-7)continue;
                dp[i][j]=(l[i][j]*dp[i][j+1]+d[i][j]*dp[i+1][j]+2)/p;

            }
        }
        printf("%.3lf\n",dp[1][1]);
    }
    return 0;
}

 

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值