Trainsorting (最长上升(下降)子序列)

本文探讨了一种特殊的火车调度问题,即如何在限定条件下排列车厢以形成最长且重量递减的列车。通过动态规划的方法,计算了以每个车厢为结尾时可能形成的最长序列,并最终找出最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Erin is an engineer. She drives trains. She also arranges the cars within each train. She prefers to
put the cars in decreasing order of weight, with the heaviest car at the front of the train.
Unfortunately, sorting train cars is not easy. One cannot simply pick up a car and place it somewhere
else. It is impractical to insert a car within an existing train. A car may only be added to the beginning
and end of the train.
Cars arrive at the train station in a predetermined order. When each car arrives, Erin can add it
to the beginning or end of her train, or refuse to add it at all. The resulting train should be as long as
possible, but the cars within it must be ordered by weight.
Given the weights of the cars in the order in which they arrive, what is the longest train that Erin
can make?
Input
The first line is the number of test cases to follow. The test cases follow, one after another; the format
of each test case is the following:
The first line contains an integer 0 ≤ n ≤ 2000, the number of cars. Each of the following n lines
contains a non-negative integer giving the weight of a car. No two cars have the same weight.
Output
Output a single integer giving the number of cars in the longest train that can be made with the given
restrictions.
Sample Input
1
3
1
2
3
Sample Output
3

题目大概:

给你一个数t,t组样例,然后给你n个数,你可以按顺序,从这数中,去取数,加到自己手中,自己手中的数,是排成了一个自上而下的堆,上面小,下面大,取得的数,只能放在最下方,或者最上方。问最多,这个堆有多大。

思路:

可以先求出,以每个数结尾的最长上升子序列和最长下降子序列。

然后枚举每两个数(一个上升结尾,一个下降结尾),是否是最长的。


代码:

#include <bits/stdc++.h>

using namespace std;
const int maxn=2010;
int dp1[maxn];
int dp2[maxn];
int a[maxn];
int main()
{
    int n,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        memset(dp1,0,sizeof(dp1));
        memset(dp2,0,sizeof(dp2));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=1;i<=n;i++)dp1[i]=1;
        for(int i=1;i<=n;i++)dp2[i]=1;
        for(int i=n;i>=1;i--)
        {
            for(int j=n;j>i;j--)
            {
                if(a[j]>a[i])
                {
                    if(dp1[i]<dp1[j]+1)
                    {
                        dp1[i]=dp1[j]+1;
                    }
                }
                if(a[j]<a[i])
                {
                    if(dp2[i]<dp2[j]+1)
                    {
                        dp2[i]=dp2[j]+1;
                    }
                }
            }
        }
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            sum=max(sum,max(dp1[i],dp2[i]));//自身
            for(int j=i+1;j<=n;j++)
            {
                if(a[i]<a[j])//大的上升,小的下降
                sum=max(sum,dp1[j]+dp2[i]);
                else if(a[i]>a[j])
                sum=max(sum,dp1[i]+dp2[j]);
            }
        }
        printf("%d\n",sum);

    }

    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值