nn.MultiheadAttention返回的注意力权重和标准的计算注意力权重的区别

#本篇只是随笔小记

试了一下,拿正弦位置编码直接做自注意力,如果手算注意力权重,应该是这样的:

attention_scores = torch.matmul(pos_x, pos_x.T)/512**0.5  # (seq_len, seq_len)

# 应用 softmax 来获得注意力权重
attention_weights = torch.softmax(attention_scores, dim=-1)

可视化的效果是这样的:

如果用nn.MultiheadAttention返回注意力权重矩阵,应该是这样的:

q = torch.tensor(pos_x)
q = q.reshape(100,512)
q = q[:,None,:]
print(q.shape)
self_attn = nn.MultiheadAttention(num_pos_feats, num_heads=2)
# 手动设置权重和偏置为单位矩阵和零
#identity = torch.eye(512)
#self_attn.in_proj_weight.data = torch.cat([identity, identity, identity])
#self_attn.in_proj_bias.data = torch.zeros(3 * 512)
temp = self_attn(q, q, q)[1]
print(temp)
temp = temp.squeeze().detach().numpy()
#temp = temp.detach().numpy()
print(temp.shape)

可视化结果是这样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值