题意:一个famer有一些农场,这些农场里面有一些田地,田地里面有一些虫洞,田地和田地之间有路双向路,虫洞有这样的性质: 时间倒流。问你这个农民能不能看到他自己,也就是说,有没有这样一条路径,能利用虫洞的时间倒流的性质,让这个人能在这个点出发前回去,这样他就是能看到他自己。
输入n个点m条田地之间的路,w个虫洞。
思路:有负环输出YES,没负环输出NO。
交POJ会CE,换一下万能头就好了。
队列优化BellmanFord(SPFA):
最坏情况复杂度O(n*m),一般比这个快的多
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, dist; //起点,终点,距离
Edge(int u, int v, int w):from(u), to(v), dist(w) {}
};
struct SPFA
{
int n, m; //结点数,边数(包括反向弧)
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
bool vis[MAXN]; //是否在队列中
int d[MAXN]; //Bellman-Ford
int p[MAXN]; //上一条弧
int cnt[MAXN]; //进队次数
void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void AddEdge(int from, int to, int dist)
{
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
bool spfa(int s)
{
for (int i = 0; i <= n; i++) d[i] = INF;
memset(vis, 0, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
d[s] = 0; vis[s] = true;
queue<int> Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = false;
for (int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (d[u] < INF && d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if (!vis[e.to])
{
Q.push(e.to); vis[e.to] = true;
if (++cnt[e.to] > n) return false;//有负环
}
}
}
}
return true;//没有负环
}
}solve;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m, w;
scanf("%d%d%d", &n, &m, &w);
solve.init(n);
while(m--)
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
solve.AddEdge(u, v, t);
solve.AddEdge(v, u, t);
}
while (w--)
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
solve.AddEdge(u, v, -t);
}
if (!solve.spfa(1)) printf("YES\n");//没负环
else printf("NO\n");//有负环
}
return 0;
}
/*
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
*/
//Answer:NO,YES
BellmanFord:
复杂度O(n*m)
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, dist; //起点,终点,距离
Edge(int u, int v, int w):from(u), to(v), dist(w) {}
};
struct BellmanFord
{
int n, m; //结点数,边数(包括反向弧)
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
bool vis[MAXN]; //是否在队列中
int d[MAXN]; //Bellman-Ford
int p[MAXN]; //上一条弧
int cnt[MAXN]; //进队次数
void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void AddEdge(int from, int to, int dist)
{
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
bool bellmanford(int s)//bellmanford
{
for (int i = 0; i <= n; i++) d[i] = INF;
d[s] = 0;
for (int k = 0; k < n - 1; k++)//迭代n-1次
{
bool flag = false;
for (int i = 0; i < m; i++)//检查每条边
{
Edge& e = edges[i];
if (d[e.from] < INF && d[e.to] > d[e.from] + e.dist)
{
flag = true;
d[e.to] = d[e.from] + e.dist;
p[e.to] = i;
}
}
if (!flag) break;//只要某一次没relax,说明最短路径已经查找完毕,或者部分点不可达,可以跳出
}
for (int i = 0; i < m; i++)
{
Edge& e = edges[i];
if (d[e.from] < INF && d[e.to] > d[e.from] + e.dist) return false;//有负环
}
return true;//没有负环
}
}solve;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m, w;
scanf("%d%d%d", &n, &m, &w);
solve.init(n);
while(m--)
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
solve.AddEdge(u, v, t);
solve.AddEdge(v, u, t);
}
while (w--)
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
solve.AddEdge(u, v, -t);
}
if (!solve.bellmanford(1)) printf("YES\n");//没负环
else printf("NO\n");//有负环
}
return 0;
}
/*
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
*/
//Answer:NO,YES
DFS_SPFA
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, dist; //起点,终点,距离
Edge(int u, int v, int w):from(u), to(v), dist(w) {}
};
struct SPFA
{
int n, m; //结点数,边数(包括反向弧)
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
bool vis[MAXN]; //是否走过
int d[MAXN]; //spfa
int p[MAXN]; //上一条弧
bool flag;
void init(int n)
{
flag = false;
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void AddEdge(int from, int to, int dist)
{
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
void dfs(int u)//spfa
{
vis[u] = true;
for (int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist)
{
if (vis[e.to]) { flag = true; break ; }
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
dfs(e.to);
}
}
vis[u] = false;
}
bool spfa(int s)
{
memset(d, INF, sizeof(d));
memset(vis, 0, sizeof(vis));
d[s] = 0;
dfs(s);
if (flag) return false;//有负环
return true;//无负环
}
}solve;
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m, w;
scanf("%d%d%d", &n, &m, &w);
solve.init(n);
while(m--)
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
solve.AddEdge(u, v, t);
solve.AddEdge(v, u, t);
}
while (w--)
{
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
solve.AddEdge(u, v, -t);
}
if (!solve.spfa(1)) printf("YES\n");//没负环
else printf("NO\n");//有负环
}
return 0;
}
/*
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
*/
//Answer:NO,YES