epoch、batch、training step(iteration)的区别

本文详细解释了深度学习训练过程中的关键概念,包括iteration、batch-size和epoch的区别与联系,以及它们在使用mini-batch SGD算法时的具体应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于初学者来讲,有几个概念容易混淆:
(1)iteration:表示1次迭代(也叫training step),每次迭代更新1次网络结构的参数;(2)batch-size:1次迭代所使用的样本量;
(3)epoch:1个epoch表示过了1遍训练集中的所有样本。值得注意的是,在深度学习领域中,常用带mini-batch的随机梯度下降算法(Stochastic Gradient Descent, SGD)训练深层结构,它有一个好处就是并不需要遍历全部的样本,当数据量非常大时十分有效。此时,可根据实际问题来定义epoch,例如定义10000次迭代为1个epoch,若每次迭代的batch-size设为256,那么1个epoch相当于过了2560000个训练样本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值