Notes: | |
Given a binary tree, flatten it to a linked list in-place. | |
For example, | |
Given | |
1 | |
/ \ | |
2 5 | |
/ \ \ | |
3 4 6 | |
The flattened tree should look like: | |
1 | |
\ | |
2 | |
\ | |
3 | |
\ | |
4 | |
\ | |
5 | |
\ | |
6 | |
Hints: | |
If you notice carefully in the flattened tree, each node's right child points to the next node | |
of a pre-order traversal. | |
Solution: Recursion. Return the last element of the flattened sub-tree. | |
*/ |
/** | |
* Definition for binary tree | |
* struct TreeNode { | |
* int val; | |
* TreeNode *left; | |
* TreeNode *right; | |
* TreeNode(int x) : val(x), left(NULL), right(NULL) {} | |
* }; | |
*/ |
思路:
利用栈:现将右接点压入栈,再将左节点压入栈,在弹出来的时候,左节点赋NULL,有节点指向栈顶元素
class Solution {
public:
void flatten(TreeNode *root) {
flatten_3(root);
}
void flatten_1(TreeNode *root) {
if (root == NULL) return;
flatten_1(root->left);
flatten_2(root->right);
if (root->left == NULL) return;
TreeNode *p = root->left;
while (p->right) p = p->right;
p->right = root->right;
root->right = root->left;
root->left = NULL;
}
TreeNode * dfs (TreeNode * root, TreeNode * tail){
if(root == NULL) return tail;
root->right = dfs(root->left,dfs(root->right,tail));
root->left = NULL;
return root;
}
void flatten_2(TreeNode *root) {
if(root == NULL) return;
dfs(root, NULL);
}
void flatten_3(TreeNode *root) {
if(root==nullptr) return;
stack<TreeNode*> s;
s.push(root);
while(!s.empty()){
auto p=s.top();
s.pop();
if(p->right) s.push(p->right);
if(p->left) s.push(p->left);
p->left = nullptr;
if(!s.empty()){
p->right=s.top();
}else p->right = nullptr;
}
}
void flatten_4(TreeNode *root) {
TreeNode *end = NULL;
flattenRe(root, end);
}
void flattenRe(TreeNode *node, TreeNode *&end) {
if (!node) return;
TreeNode *lend = NULL, *rend = NULL;
flattenRe(node->left, lend);
flattenRe(node->right, rend);
if (node->left) {
lend->right = node->right;
node->right = node->left;
node->left = NULL;
}
end = rend ? rend : (lend ? lend : node);
}
};