算法沉淀——动态规划篇(子数组系列问题(下))
前言
几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此
-
1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。
以i为结尾
,dp[i] 表示什么,通常为代求问题(具体依题目而定)以i为开始
,dp[i]表示什么,通常为代求问题(具体依题目而定)
-
2、状态转移方程
- 以上述的dp[i]意义为根据, 通过
最近一步来分析和划分问题
,由此来得到一个有关dp[i]的状态转移方程。
- 以上述的dp[i]意义为根据, 通过
-
3、dp表创建,初始化
- 动态规划问题中,如果直接使用状态转移方程通常会伴随着
越界访问
等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
。 - 而
初始化一般分为以下两种:
直接初始化开头的几个值。
一维空间大小+1,下标从1开始;二维增加一行/一列
。
- 动态规划问题中,如果直接使用状态转移方程通常会伴随着
-
4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。
-
5、确定返回值
一、等差数列划分
【题目】:413. 等差数列划分
【题目】:
如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。(子数组 是数组中的一个连续序列)
【示例】:
输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。
【分析】:
我们可以定义dp[i]表示以i为结尾,等差数组的子数组个数。之后我们可以通过判断(nums[i]、nums[i-1]、nums[i-2])是否构成等差数列,来进一步分析
状态转移方程推导:
- 如果nums[i]、nums[i-1]、nums[i-2]不构成等差数列,显然此时以i为结尾的等差数组的子数组个数为0。即
dp[i] = 0;
- 如果构成等差数列,此时dp[i]的值至少为1。此时我们还需加上dp[i-1]的值。原因在于如果以i-1为结尾的等差数列存在,此时该等差数列公差为
dp[i-1] -dp[i-2]
。同时nums[i]、nums[i-1]、nums[i-2]构成等差数列,公差也为dp[i-1] -dp[i-2]
。这也意味着,以i-1为结尾的所有等差数列,在添加新增nums[i]元素后,依然是等差数列。所以状态转移方程为dp[i] = dp[i - 1] + 1;
细节处理:
显然当i为1、2时,状态转移方程不适用。我们由于dp[0]、dp[1]一定构不成等差数列,所以我们可以先将dp[0]、dp[1]先初始化为0,在从下标2开始,从左往右填表。
【代码编写】:
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n);
int ret = 0;
for(int i = 2; i < n; i++)
{
if(nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])
dp[i] = dp[i - 1] + 1;
ret +=