Leetcode 374 & 375

本文解析了LeetCode上的两个猜数字游戏问题。首先介绍了一个简单的二分查找算法解决猜数字问题,接着深入探讨了如何使用动态规划求解最小花费以确保在游戏中获胜。文章通过实例解释了算法的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode 374 & 375

374 Guess Number Higher or Lower

Description

We are playing the Guess Game. The game is as follows:
I pick a number from 1 to n. You have to guess which number I picked.
Every time you guess wrong, I’ll tell you whether the number is higher or lower.
You call a pre-defined API guess(int num) which returns 3 possible results (-1, 1, or 0):

-1 : My number is lower
 1 : My number is higher
 0 : Congrats! You got it!

题意分析

374是一道简单题,给出一个数字n,猜1到n中的数字中的一个,通过调用API guess函数来判断你的猜测是比结果大还是小,返回1表示猜得太大,-1反之,0就正确了,通过一个简单的二分查找就可以得出答案,solution里面还有用三分查找,道理一样的。二分的代码如下:

// Forward declaration of guess API.
// @param num, your guess
// @return -1 if my number is lower, 1 if my number is higher, otherwise return 0
int guess(int num);

class Solution {
public:
    int guessNumber(int n) {
        int low = 1, high = n, mid, res;
        while (low <= high) {
            mid = low + (high - low) / 2;
            res = guess(mid);
            if (res == 0)
                return mid;
            if (res < 0)
                high = mid - 1;
            else
                low = mid + 1;
        }
        return -1;
    }
};

375 Guess Number Higher or Lower II

Description

We are playing the Guess Game. The game is as follows:
I pick a number from 1 to n. You have to guess which number I picked.
Every time you guess wrong, I’ll tell you whether the number I picked is higher or lower.
However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:
n = 10, I pick 8.
First round:  You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round:  You guess 9, I tell you that it's lower. You pay $9.
Game over. 8 is the number I picked.
You end up paying $5 + $7 + $9 = $21.

题意分析

这道题就比较难了,题目意思是这样的,同样是猜1到n的一个数字,比如说n=10,结果为8,我猜5,错了,我要给你5块钱,你说猜小了。我再猜9,错了,我给你9块钱,你说猜大了。我再猜8,猜对了。一路下来我要给17块钱,问题就是求解我至少需要多少钱,才能保证我一定能赢?
解题之前先再来思考一下题目的情况,大致就是“要找出最小的最大值”,就是从1到n中,我应该怎么选才能使得我花的钱最少,但是又能保证我赢。比如说n=5,结果为2,如果我一开始猜3,大了,然后我可以选择猜1、2或者4、5,那么这个时候我就应该至少有3 + 4 = 7块钱才能保证我一定能赢,因为如果我只有3 + 2 = 5块钱,并且结果为4的情况下,我第二轮选4或者5都有可能让我输,但是如果我有4,无论我选1、2、4,我都能保证最后我能赢。然后再讨论一开始选择1、2、3、4、5五种情况下的花费最少的情况,就是结果。
想到这里,就可以用分治(动态规划)的方法来做,先选出一个i,然后把一个数组分成i的左边跟右边,找出左边右边的较大者加上i,然后取出1到n中最小的结果的那个i的方案,就是最后的答案,代码如下:

class Solution {
public:
        // 数组nums[i][j]表示的是在已经选择了i的前提下,选中最后结果为j的情况所需的总的花费
    int getMoneyAmount(int n) {
        int **nums = new int*[n + 1];
        for (int i = 0; i <= n; i++) {
            nums[i] = new int [n + 1];
        }
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                nums[i][j] = 0;
        int res = solve(nums, 1, n);
        for (int i = 0; i <= n; i++)
            delete []nums[i];
        delete []nums;
        return res;
    }
    int solve(int** nums, int left, int right) {
        // 当左边的边界大于等于右边边界的时候,表明已经到了极限,游戏结束
        if (left >= right)
            return 0;
        // 这里用一个保存的方法,避免重新进入数组的时候重新计算
        if (nums[left][right] != 0)
            return nums[left][right];
        int res = INT_MAX;
        int temp;
        for (int i = left; i <= right; i++) {
            // 考虑最坏的情况
            temp = i + max(solve(nums, left, i - 1), solve(nums, i + 1, right));
            if (temp < res)
                res = temp;
        }
        // 记得要把数组的值保存
        nums[left][right] = res;
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值