Leetcode 212. 单词搜索 II

本文探讨了如何将回溯算法优化,通过转换为前缀树结构来提升查找单词效率。作者对比了两种实现方式,介绍了前缀树的插入和搜索,并展示了如何用前缀树在文字搜索问题中替换回溯,以应对超时挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题
几个月前使用回溯可以通过,代码如下:

class Solution {
private:
    vector<string> ans;
public:
    vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
        int m=board.size();
        if(!m) return {};
        int n=board[0].size();
        for(int i=0;i<words.size();i++){
            vector<vector<int>> visited(m,vector<int>(n,0));
            int j,k;
            bool flag=0;
            for(j=0;j<m;j++){
                for(k=0;k<n;k++){
                    if(board[j][k]==words[i][0]) 
                        if(trackback(visited,board,words[i],0,j,k)){
                            flag=true;
                            break;
                        }
                }
                if(flag) break;
            }
        }
        return ans;
    }
    int trackback(vector<vector<int>>& visited, vector<vector<char>>& board, string word, int pos, int i, int j){
        if(pos>=word.size()){
            ans.push_back(word);
            return 1;
        }
        if(i>=board.size() || i<0) return 0;
        if(j>=board[0].size() || j<0) return 0;
        if(visited[i][j] || board[i][j]!=word[pos]) return 0;
        visited[i][j]=1;
        if(trackback(visited, board, word, pos+1,i+1, j) ||
        trackback(visited, board, word, pos+1,i-1, j) ||
        trackback(visited, board, word, pos+1,i, j+1) ||
        trackback(visited, board, word, pos+1,i, j-1)) return 1;
        visited[i][j]=0;
        return 0;
    }
};

原理很简单,就是向上下左右递归寻找,找到完整单词则计入结果集。
今天每日一题再次遇到,回溯超时:

class Solution {
public:
    static constexpr int direcs[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
    int m, n;
    vector<string> res;
    int flag;
    vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
        m=board.size(), n=board[0].size();
        for(auto& word:words){
            flag=0;
            vector<vector<int>> visited(m ,vector<int>(n,0));
            for(int i=0;i<m;i++){
                for(int j=0;j<n;j++){
                    visited[i][j]=1;
                    if(board[i][j]==word[0]) traceback(board, i, j, word, 0, visited);
                    visited[i][j]=0;
                }
            }
        }
        return res;
    }
    void traceback(vector<vector<char>>& board, int i, int j, string& word, int pos, vector<vector<int>>& visited){
        if(flag==1) return ;
        if(board[i][j]!=word[pos]) return ;
        if(pos==word.length()-1 && board[i][j]==word[word.length()-1]){
            res.push_back(word);
            flag=1;
            return ;
        }
        if(pos>=word.length()-1) return ;
        for(auto& direc:direcs){
            int x=i+direc[0], y=j+direc[1];
            if(x>=0 && x<m && y>=0 && y<n && visited[x][y]==0){
                visited[x][y]=1;
                traceback(board, x, y, word, pos+1, visited);
                visited[x][y]=0;
            }
        }
    }
};

蛮无语的,相似的代码,之前超过100%用户,现在通过不了。

只能考虑前缀树了。
先默写前缀树的插入和搜索代码:

//前缀树
class Tire{
public:
    string word;
    unordered_map<int, Tire*> next;
    Tire(){
        word="";
    }
};
void insertTire(Tire* root, string word){
    Tire* node=root;
    for(char ch:word){
        if(node->next[ch-'a']==NULL){
            node->next[ch-'a']=new Tire();
        }
        node=node->next[ch-'a'];
    }
    node->word=word;
}
bool searchTire(Tire* root, string word){  // 寻找是否包含word这个单词
    Tire* node=root;
    for(char ch:word){
        node=node->next[ch-'a'];
        if(node==NULL) return false;
    }
    return node->word==word;
}
Tire* searchPrefix(Tire* root, string prefix){  // 寻找是否包含这个前缀,包含则返回前缀的最后节点
    Tire* node=root;
    for(char ch:prefix){
        node=node->next[ch-'a'];
        if(node==NULL) return NULL;
    }
    return node;
}

然后使用这个线段树解决这一题:

class Tire{
public:
    string word;
    unordered_map<int, Tire*> next;
    Tire(){
        word="";
    }
};
void insertTire(Tire* root, string word){
    Tire* node=root;
    for(char ch:word){
        if(node->next[ch-'a']==NULL){
            node->next[ch-'a']=new Tire();
        }
        node=node->next[ch-'a'];
    }
    node->word=word;
}
bool searchTire(Tire* root, string word){  // 寻找是否包含word这个单词
    Tire* node=root;
    for(char ch:word){
        node=node->next[ch-'a'];
        if(node==NULL) return false;
    }
    return node->word==word;
}
Tire* searchPrefix(Tire* root, string prefix){  // 寻找是否包含这个前缀,包含则返回前缀的最后节点
    Tire* node=root;
    for(char ch:prefix){
        node=node->next[ch-'a'];
        if(node==NULL) return NULL;
    }
    return node;
}

class Solution {
private:
    vector<string> res;
public:
    int dircts[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
    vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
        int m=board.size(), n=board[0].size();
        Tire* root=new Tire();
        for(auto& word:words) insertTire(root, word);
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                traceback(board, i, j, root);
            }
        }
        return res;
    }
    void traceback(vector<vector<char>>& board, int x, int y, Tire* root){
        char ch=board[x][y];
        if(!root->next[ch-'a']) return;
        root=root->next[ch-'a'];
        if(root->word.length()>0){  
            //能继续往后遍历,说明当前路径上的节点都再前缀树中,不然就从上边的return返回了。所以如果当前节点是某个单词的结尾,则该单词科放入结果集
            res.push_back(root->word);
            root->word="";  // 再前缀树中将当前节点保存到单词情况,防止重复加入结果集。
        }
        board[x][y]='#';
        for(auto& dirct:dircts){
            int _x=x+dirct[0], _y=y+dirct[1];
            if(_x>=0 && _x<board.size() && _y>=0 && _y<board[0].size()){
                traceback(board, _x, _y, root);
            }
        }
        board[x][y]=ch;
    }
};

关键步骤都在注释中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值