原文出处:https://blog.youkuaiyun.com/rtygbwwwerr/article/details/50778098
红字部分为读完这篇博文之后我的一些理解。
交叉熵(Cross-Entropy)
交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。
1.什么是信息量?
假设是一个离散型随机变量,其取值集合为
,概率分布函数为
,我们定义事件
的信息量为
可以理解为,一个事件发生的概率越大,则它所携带的信息量就越小,而当时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。
举个例子,小明平时不爱学习,考试经常不及格,而小王是个勤奋学习的好学生,经常得满分,所以我们可以做如下假设:
事件A:小明考试及格,对应的概率,信息量为
事件B:小王考试及格,对应的概率,信息量为
可以看出,结果非常符合直观:小明及格的可能性很低(十次考试只有一次及格),因此如果某次考试及格了(大家都会说:XXX竟然及格了!),必然会引入较大的信息量,对应的值也较高。而对于小王而言,考试及格是大概率事件,在事件B发生前,大家普遍认为事件B的发生几乎是确定的,因此当某次考试小王及格这个事件发生时并不会引入太多的信息量,相应的
值也非常的低。
2.什么是熵?
那么什么又是熵呢?还是通过上边的例子来说明,假设小明的考试结果是一个0-1分布
只有两个取值{0:不及格,1:及格},在某次考试结果公布前,小明的考试结果有多大的不确定度呢?你肯定会说:十有八九不及格!因为根据先验知识,小明及格的概率仅有10%,90%的可能都是不及格的。怎么来度量这个不确定度?求期望!不错,我们对所有可能结果带来的额外信息量求取均值(期望),其结果不就能够衡量出小明考试成绩的不确定度了吗。
即:
对应小王的熵:
虽然小明考试结果的不确定性较低,毕竟十次有9次都不及格,但是也比不上小王(1000次考试只有一次才可能不及格,结果相当的确定)
我们再假设一个成绩相对普通的学生小东,他及格的概率是P(xC)=0.5,即及格与否的概率是一样的,对应的熵:
其熵为1,他的不确定性比前边两位同学要高很多,在成绩公布之前,很难准确猜测出他的考试结果。
可以看出,熵其实是信息量的期望值,它是一个随机变量的确定性的度量。熵越大,变量的取值越不确定,反之就越确定。
对于一个随机变量而言,它的所有可能取值的信息量的期望
就称为熵。
随机变量的熵定义为:
如果是连续型随机变量的
,则熵定义为:
为了保证有效性,这里约定当时,有
当为0-1分布时,熵与概率p的关系如下图:
可以看出,当两种取值的可能性相等时,不确定度最大(此时没有任何先验知识),这个结论可以推广到多种取值的情况。在图中也可以看出,当p=0或1时,熵为0,即此时完全确定。
熵的单位随着公式中对数运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为时,单位为“奈特”。
3.什么是相对熵?
相对熵(relative entropy)又称为KL散度(Kullback-Leibler divergence),KL距离,是两个随机分布间距离的度量。记为DKL(p||q)。它度量当真实分布为p时,假设分布q的无效性。
也就是交叉熵减去熵。
并且为了保证连续性,做如下约定:
显然,当时,两者之间的相对熵
上式最后的表示在p分布下,使用q进行编码需要的bit数,而
表示对真实分布p所需要的最小编码bit数。基于此,相对熵的意义就很明确了:
表示在真实分布为p的前提下,使用q分布进行编码相对于使用真实分布p进行编码(即最优编码)所多出来的bit数。
4. 什么是交叉熵?
交叉熵容易跟相对熵搞混,二者联系紧密,但又有所区别。假设有两个分布p,q,则它们在给定样本集上的交叉熵定义如下:
可以看出,交叉熵与上一节定义的相对熵仅相差了,当
已知时,可以把
看做一个常数,此时交叉熵与KL距离在行为上是等价的,都反映了分布p,q的相似程度。最小化交叉熵等于最小化KL距离。它们都将在p=q时取得最小值(p=q时KL距离为0,交叉熵为
),因此有的工程文献中将最小化KL距离的方法称为Principle of Minimum Cross-Entropy (MCE)或Minxent方法。
举个例子:含有4个字母(A,B,C,D)的数据集中,真实分布,即A和B出现的概率均为
,C和D出现的概率都为0。则熵为
即只需要1位编码即可识别A和B。其中。
如果使用分布来编码则得到
即需要2位编码来识别A和B。
而交叉熵损失(cross entropy loss)就是把交叉熵当做损失函数时这个损失函数的名称,即交叉熵损失等价于交叉熵。
5.参考链接:
维基百科关于cross-entropy的解释
交叉熵损失函数
UFLDL中关于logistic regression的说明
Kraft’s inequality
Visual Information