import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
def weight(x,y):
u = []
classify = np.unique(y)
for i in range(len(classify)):
u.append(np.mean(x[y==classify[i]],axis=0))
Sw = 0
for j in range(x.shape[0]):
if y[j] == 0:
u0 = u[0]
a = np.mat((x[j] - u0))
Sw += np.dot(a.T,a)
elif y[j] == 1:
u1 = u[1]
b = np.mat((x[j] - u1))
Sw += np.dot(b.T,b)
Sb = np.dot((u[0] - u[1]).T,((u[0] - u[1])))
mu, sigma, v = np.linalg.svd(np.array(np.mat(Sw),dtype=float))
Sw_inv = v.T * np.linalg.inv(np.diag(sigma)) * mu.T
w = np.dot(Sw_inv,(u[0] - u[1]).T)
return w,Sb,Sw
def costfunc(w,Sb,Sw):
J = np.dot(np.dot(w.T,Sb),w) / np.dot(np.dot(w.T,Sw),w)
return J
def LDA(x,y):
w,Sb,Sw = weight(x,y)
print("cost is {}".format(costfunc(w,Sb,Sw)))
return w
机器学习-线性模型-LDA(线性判别分析)PYTHON 代码实现
最新推荐文章于 2024-09-10 10:23:13 发布