Palindromic Substrings

本文介绍了如何计算字符串中所有回文子串的数量,并提供了两种解决方案:暴力枚举和递归算法。暴力枚举方法通过双重循环遍历所有可能的子串并检查其是否为回文,递归算法则利用子问题的重叠性质采用动态规划优化计算过程。

Palindromic Substrings

Given a string, your task is to count how many palindromic substrings in this string.

The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.

Example 1:

Input: "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".

Example 2:

Input: "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".

Note:
The input string length won’t exceed 1000.

Solution 1

The simplest and most violent solution is to enumerate all the cases (see the below graph), for string “abacb”:

                a(*)     b(*)  a(*)   c(*)    b(*)      
                |         |     ...    ...   ...
                ab        ba
                |         |
                aba(*)    bac
                |         | 
                abac     bacb
                |
                abacb

substrs marked with * are palindromic. We just need two loops [O(n*n)] to enumerate all the possible substrings, and use a loop [O(n)] to judge whether the substring is palindromic. If true, accumulate the number of palindromic substrings. Finally, the time complexity is O(n^3), space complexity is O(1).

class Solution {
public:
    int countSubstrings(string s) {
        return method1(s);
    }

private:
    int method1(string s)
    {
        int n = s.size();
        int res = 0;
        for (int i = 0; i < n; ++i)
        {
            for (int j = i; j < n; ++j)
            {
                if (isPalindromic(s.substr(i, j - i + 1)))
                {
                    ++res;
                }
            }
        }
        return res;
    }

    bool isPalindromic(string s)
    {
        int n = s.size();
        for (int i = 0; i < n / 2; ++i)
        {
            if (s[i] != s[n - 1 - i]) return false;
        }
        return true;
    }
};

Solution 2

The problem can be defined recursively (refer to GeeksforGeeks). So there is a recursive solution.

Function: int palindromicSubstrNum(string s, int start, int end);
Stop condition:
    if (start < end) return 0;
    if (start == end) return 1;
Recursive Logic:
    int res = isPalindromic(s, start, end) ? 1 : 0;
    return res + palindromicSubstrNum(s, start, end - 1) + palindromicSubstrNum(s, start + 1, end) - palindromicSubstrNum(start + 1, end - 1);

There’s so many overlapping subproblems. For overlapping subproblems, we can use dynamic programming to solve it more efficiently.
Q1: What is the time complexity of the recursive solution ?

Solution 3

数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究(Matlab代码实现)内容概要:本文围绕“数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究”展开,提出了一种结合数据驱动与分布鲁棒优化方法的建模框架,用于解决电热综合能源系统在不确定性环境下的优化调度问题。研究采用两阶段优化结构,第一阶段进行预决策,第二阶段根据实际场景进行调整,通过引入1-范数和∞-范数约束来构建不确定集,有效刻画风电、负荷等不确定性变量的波动特性,提升模型的鲁棒性和实用性。文中提供了完整的Matlab代码实现,便于读者复现和验证算法性能,并结合具体案例分析了不同约束条件下系统运行的经济性与可靠性。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及工程技术人员,尤其适合从事综合能源系统、鲁棒优化、不确定性建模等相关领域研究的专业人士。; 使用场景及目标:①掌握数据驱动的分布鲁棒优化方法在综合能源系统中的应用;②理解1-范数和∞-范数在构建不确定集中的作用与差异;③学习两阶段鲁棒优化模型的建模思路与Matlab实现技巧,用于科研复现、论文写作或工程项目建模。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现细节,重点关注不确定集构建、两阶段模型结构设计及求解器调用方式,同时可尝试更换数据或调整约束参数以加深对模型鲁棒性的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值