1. 原子操作
原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
常用原子操作函数举例:
atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0
atomic_read(atomic_t *v); //返回原子变量的值
void atomic_inc(atomic_t *v); //原子变量增加1
void atomic_dec(atomic_t *v); //原子变量减少1
int atomic_dec_and_test(atomic_t *v); //自减操作后测试其是否为0,为0则返回true,否则返回false。
2. 信号量
信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。
当获取不到信号量时,进程进入休眠等待状态。
定义信号量
struct semaphore sem;
初始化信号量
void sema_init (struct semaphore *sem, int val);
void init_MUTEX(struct semaphore *sem);//初始化为0
static DECLARE_MUTEX(button_lock); //定义互斥锁
获得信号量
void down(struct semaphore * sem);
int down_interruptible(struct semaphore * sem);
int down_trylock(struct semaphore * sem);
释放信号量
void up(struct semaphore * sem);
3. 阻塞
阻塞操作
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。
非阻塞操作
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。
fd = open("...", O_RDWR | O_NONBLOCK);
驱动
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/fb.h>
#include <linux/backlight.h>
#include <linux/err.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/miscdevice.h>
#include <linux/delay.h>
#include <linux/timer.h> /*timer*/
#include <asm/uaccess.h> /*jiffies*/
#include <linux/delay.h>
#include <linux/interrupt.h> //request_irq
#include <mach/irqs.h> //中断号,已包含plat/irqs.h
#include <linux/fs.h>
#include <linux/device.h> //class_create device_create
#include <mach/regs-gpio.h>
#include <linux/io.h> //ioremap ioread32 iowrite32
#include <linux/sched.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/poll.h>
#include <mach/gpio.h>
#include <linux/gpio.h>
#include <mach/gpio.h>
#include <plat/gpio-cfg.h>
static struct class *sixthdrv_class;
static struct class_device *sixthdrv_class_dev;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
/* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */
static volatile int ev_press = 0;
static struct fasync_struct *button_async;
struct led_reg {
u32 gpm4con;
u8 gpm4dat;
};
static struct led_reg *led_reg;
struct key_reg {
u32 gpm4con;
u8 gpm4dat;
};
static struct key_reg *key_reg;
struct beep_reg {
u32 gpm4con;
u8 gpm4dat;
};
static struct key_reg *beep_reg;
struct pin_desc{
unsigned int pin;
unsigned int key_val;
};
/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static unsigned char key_val;
struct pin_desc pins_desc[4] = {
{EXYNOS4_GPX3(2), 0x01},
{EXYNOS4_GPX3(3), 0x02},
{EXYNOS4_GPX3(4), 0x03},
{EXYNOS4_GPX3(5), 0x04},
};
//static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1
//static DECLARE_MUTEX(button_lock); //定义互斥锁
struct semaphore button_lock;
/*
* 确定按键值
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
printk("buttons_irq\n");
struct pin_desc * pindesc = (struct pin_desc *)dev_id;
unsigned int pinval;
//pinval = s3c2410_gpio_getpin(pindesc->pin);
//获取按键的键值,因为按键是从该寄存器的第二位开始的,所以需要左移2位,接着与上0xf---1111
//这样,如果用户按下按键,就会返回一个键值保存在key_val这个变量里
pinval = ((key_reg->gpm4dat) >> 2) & 0xf ;
key_val=pinval;
printk("buttons_irq :pinval = %d \n",pinval);
#if 0
if (pinval)
{
/* 松开 */
key_val = 0x80 | pindesc->key_val;
printk("buttons_irq :key_val = %d\n ",key_val);
}
else
{
/* 按下 */
key_val = pindesc->key_val;
printk("buttons_irq :key_val = %d \n",key_val);
}
#endif
ev_press = 1; /* 表示中断发生了 */
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */
kill_fasync (&button_async, SIGIO, POLL_IN);
return IRQ_RETVAL(IRQ_HANDLED);
}
static int sixth_drv_open(struct inode *inode, struct file *file)
{
int ret;
printk("sixth_drv_open\n");
#if 0
if (!atomic_dec_and_test(&canopen))
{
atomic_inc(&canopen);
return -EBUSY;
}
#endif
if (file->f_flags & O_NONBLOCK)
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else
{
/* 获取信号量 */
down(&button_lock);
}
//配置4个按键为输入状态,因为按键是从GPXCON[2]开始的,所以要左移8位到对应的位置,将8位以后的16位清0
//这样的话就将按键配置的寄存器设置为输入状态了,因为输入是0x0
key_reg->gpm4con &= ~((0xf<<(2*4)) | (0xf<<(3*4)) | (0xf<<(4*4)) | (0xf<<(5*4)));
//先对LED的端口进行清0操作
led_reg->gpm4con &= ~((0xf<<(3*4)) | (0xf<<(2*4)) | (0xf<<(1*4)) | (0xf<<(0*4)));
//将4个IO口16位都设置为Output输出状态
led_reg->gpm4con |= ((0x1<<(3*4)) | (0x1<<(2*4)) | (0x1<<(1*4)) | (0x1<<(0*4)));
//清寄存器
beep_reg->gpm4con &= ~(0xf);
//设置io为输出
beep_reg->gpm4con |= (0x1);
ret = request_irq(IRQ_EINT(26), buttons_irq, IRQF_TRIGGER_FALLING , "k1", &pins_desc[0]);
ret =request_irq(IRQ_EINT(27), buttons_irq, IRQF_TRIGGER_FALLING , "k2", &pins_desc[1]);
ret =request_irq(IRQ_EINT(28), buttons_irq, IRQF_TRIGGER_FALLING , "k3", &pins_desc[2]);
ret =request_irq(IRQ_EINT(29), buttons_irq, IRQF_TRIGGER_FALLING , "k4", &pins_desc[3]);
return 0;
}
ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
printk("sixth_drv_read\n");
if (size != 1)
return -EINVAL;
if (file->f_flags & O_NONBLOCK)
{
if (!ev_press)
return -EAGAIN;
}
else
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}
/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 1);
ev_press = 0;
return 1;
}
int sixth_drv_write(struct file *filp , const char __user *buf , size_t count , loff_t *f_pos)
{
int val;
printk("fifth_fasync_drv_write\n");
//注意,这里是在内核中进行操作,我们需要使用copy_from_user这个函数将用户态的内容拷贝到内核态
copy_from_user(&val, buf, count);
switch(val)
{
case 7:
printk(KERN_EMERG"led1_on\n");
led_reg->gpm4dat &= ~(1<<0) ;
printk(KERN_EMERG"beep_on\n");
beep_reg->gpm4dat |= 0x1 ;
break ;
case 11:
printk(KERN_EMERG"led2_on\n");
led_reg->gpm4dat &= ~(1<<1) ;
printk(KERN_EMERG"beep_off\n");
beep_reg->gpm4dat &=~0x1 ; //蜂鸣器不响
break ;
case 13:
printk(KERN_EMERG"led3_on\n");
led_reg->gpm4dat &= ~(1<<2) ;
printk(KERN_EMERG"beep_on\n");
beep_reg->gpm4dat |= 0x1 ;
break ;
case 14:
printk(KERN_EMERG"led4_on\n");
led_reg->gpm4dat &= ~(1<<3) ;
printk(KERN_EMERG"beep_off\n");
beep_reg->gpm4dat &=~0x1 ; //蜂鸣器不响
break ;
}
return 0;
}
int sixth_drv_close(struct inode *inode, struct file *file)
{
//atomic_inc(&canopen);
led_reg->gpm4dat |= ((1<<0) | (1<<1) |(1<<2)| (1<<3)) ;
beep_reg->gpm4dat &=~0x1 ; //蜂鸣器不响
free_irq(IRQ_EINT(26), &pins_desc[0]);
free_irq(IRQ_EINT(27), &pins_desc[1]);
free_irq(IRQ_EINT(28), &pins_desc[2]);
free_irq(IRQ_EINT(29), &pins_desc[3]);
up(&button_lock);
return 0;
}
static unsigned sixth_drv_poll(struct file *file, poll_table *wait)
{
printk("sixth_drv_poll\n");
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static int sixth_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: sixth_drv_fasync\n");
return fasync_helper (fd, filp, on, &button_async);
}
static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = sixth_drv_open,
.read = sixth_drv_read,
.release = sixth_drv_close,
.poll = sixth_drv_poll,
.fasync = sixth_drv_fasync,
.write = sixth_drv_write,
};
int major;
static int sixth_drv_init(void)
{
printk("sixth_drv_init\n");
major = register_chrdev(0, "sixth_drv", &sencod_drv_fops);
sixthdrv_class = class_create(THIS_MODULE, "sixth_drv");
sixthdrv_class_dev = device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "chenhaipan"); /* /dev/buttons */
led_reg = ioremap(0x110002e0, sizeof(struct led_reg));
beep_reg = ioremap(0x114000A0, sizeof(struct beep_reg));
key_reg = ioremap(0x11000C60, sizeof(struct key_reg));
sema_init(&button_lock, 1);
return 0;
}
static void sixth_drv_exit(void)
{
printk("sixth_drv_exit\n");
unregister_chrdev(major, "sixth_drv");
device_destroy(sixthdrv_class, MKDEV(major, 0));
class_destroy(sixthdrv_class);
iounmap(led_reg);
iounmap(beep_reg);
iounmap(key_reg);
}
module_init(sixth_drv_init);
module_exit(sixth_drv_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("xiangtan da xue chenhaipan");
MODULE_VERSION("2017.5.4");
应用
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
/* sixthdrvtest
*/
int fd;
void my_signal_fun(int signum)
{
unsigned char key_val;
read(fd, &key_val, 1);
printf("key_val: 0x%x\n", key_val);
}
int main(int argc, char **argv)
{
unsigned char key_val;
int ret;
int Oflags;
//signal(SIGIO, my_signal_fun);
fd = open("/dev/chenhaipan", O_RDWR | O_NONBLOCK);
if (fd < 0)
{
printf("can't open!\n");
return -1;
}
//fcntl(fd, F_SETOWN, getpid());
//Oflags = fcntl(fd, F_GETFL);
//fcntl(fd, F_SETFL, Oflags | FASYNC);
while (1)
{
ret = read(fd, &key_val, 1);
printf("key_val: 0x%x, ret = %d\n", key_val, ret);
write(fd, &key_val,1);
sleep(5);
}
return 0;
}
非阻塞方式,没有按键值按下,程序立马返回;
read 返回值 为 -1;
阻塞方式 open
如果不按键,就一直停留,等待,并不运行
总结:阻塞操作:
是指在执行设备操作时,若不能获得资源则挂起进程,直到满足可操作的条件后进行操作,
被挂起的进程进入睡眠状态,被从调度器的运行队列移走,直到等待的条件被满足.
非阻塞操作:
进程不能进行设备操作时并不挂起,他或者放弃,或者不停的查询,直到可以进行操作为止.