Integration of Polynomial (周赛1)

本文深入探讨了复杂代码逻辑的解析方法,从代码的核心内容出发,详细介绍了如何通过分析关键信息来理解代码逻辑,并提供了一系列在实际编程中应用这些解析技巧的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Suppose there are a polynomial which has n nonzero terms, please print the integration polynomial of the given polynomial.

The polynomial will be given in the following way, and you should print the result in the same way:

k[1] e[1] k[2] e[2] ... k[n] e[n]

where k[i] and e[i] respectively represent the coefficients and exponents of nonzero terms, and satisfiese[1] < e[2] < ... < e[n].

Note:

  • Suppose that the constant term of the integration polynomial is 0.
  • If one coefficient of the integration polynomial is an integer, print it directly.
  • If one coefficient of the integration polynomial is not an integer, please print it by using fractiona/b which satisfies that is coprime to b.

Input

There are multiple cases.

For each case, the first line contains one integer n, representing the number of nonzero terms.

The second line contains 2*n integers, representing k[1], e[1], k[2], e[2], ..., k[n], e[n]

1 ≤ n ≤ 1000

-1000 ≤ k[i] ≤ 1000, k[i] != 0, 1 ≤ i ≤ n

0 ≤ e[i] ≤ 1000, 1 ≤ i ≤ n

Output

Print the integration polynomial in one line with the same format as the input.

Notice that no extra space is allowed at the end of each line.

Sample Input

3
1 0 3 2 2 4

Sample Output

1 1 1 3 2/5 5


定积分

 = =

#include <stdio.h>
#include <math.h>

int GY(int x,int y)
{
    int t,r;
    if(x<y)
    {
        t=x;x=y;y=t;
    }

    while(y!=0)
    {r=x%y;x=y;y=r;}

    return x;
}
int main()
{

        int n,x;
        int k[2000],e[2000];
        while(~scanf("%d",&n))
        {
            int i;
            int key;
            for(i=0;i<n;i++)
            {
                scanf("%d %d",&k[i],&e[i]);
                e[i]=e[i]+1;
            }

        for(i=0;i<n;i++)
        {
            if(i<n-1)
            {
                  if(k[i]<0)
                  {
                        x=-1*k[i];

                        if(x%e[i]==0)
                            printf("%d %d ",k[i]/e[i],e[i]);

                        else
                        {
                            key=GY(x,e[i]);
                            printf("%d/%d %d ",k[i]/key,e[i]/key,e[i]);
                         }
                  }

                  else
                  {
                        x=k[i];
                        if(x%e[i]==0)
                            printf("%d %d ",k[i]/e[i],e[i]);

                        else
                        {
                            key=GY(x,e[i]);
                            printf("%d/%d %d ",k[i]/key,e[i]/key,e[i]);
                        }
                  }
            }

            else
            {
                  if(k[i]<0)
                  {
                        x=-1*k[i];
                        if(x%e[i]==0)
                            printf("%d %d\n",k[i]/e[i],e[i]);

                        else
                        {
                            key=GY(x,e[i]);
                            printf("%d/%d %d\n",k[i]/key,e[i]/key,e[i]);
                         }
                  }

                  else
                  {
                        x=k[i];
                        if(x%e[i]==0)
                            printf("%d %d\n",k[i]/e[i],e[i]);

                        else
                        {
                            key=GY(x,e[i]);
                            printf("%d/%d %d\n",k[i]/key,e[i]/key,e[i]);
                        }
                  }
            }
        }
    }


    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值