文章将大模型岗位分为五个梯队:第一梯队是预训练和Infra工程师,技术壁垒最高;第二梯队是模型优化、后训练和多模态专家;第三梯队是应用开发工程师,需求最大;第四梯队包括数据工程、风控和评估等支撑岗位;第五梯队是Prompt工程师,门槛低但天花板有限。文章强调当前大模型领域人才缺口大,传统程序员可通过系统学习实现职业转型,并提供了学习资源。
从夯到拉,锐评大模型岗位!

🥇第一梯队:夯
这一梯队的工作直接决定了大模型的底层能力和性能上限,技术壁垒非常高,是真正的硬核技术战场。🔥
1.预训练工程师
- 日常工作:负责大模型的底层架构设计与实现,主导基座模型的预训练全流程。包括构建和优化分布式训练框架(如MegatronDeepSpeed),处理海量无标注数据的清洗与预处理,监控训练过程中的Loss收敛情况,解决大规模集群训练中的显存溢出(OOM)、通信瓶颈等底层系统级问题。
- 新手友好度:(极低)通常要求顶尖院校博士或具备深厚系统与算法功底的资深工程师
- 优势:些技术护城河极深,掌握模型核心,薪资处于行业顶端
- 避雷:避免进入算力和数据资源不足的团避雷:队,否则难以积累核心经验。
2.Infra工程师(大模型方向)
- 日常工作:负责大模型基础设施的构建与维护。包括设计和优化高效的训练与推理引擎,实现万卡集群的调度与通信优化,开发模型压缩、量化和加速技术,保障大模型训练任务的稳定性、高效性和低成本。
- 新手友好度:(极低)要求精通-C++/Rust,具备扎实的计算机体系结构、操作系统和分布式系统背景。
- 优势:技术通用性强,是AI落地的根基,职业发展路径宽广。
- 避雷:避免沦为单纯的底层运维,要聚焦于系统架构的创新与性能突破。
🥈第二梯队:顶级
这一梯队负责将预训练好的“毛坯模型”打磨成品:赋予其特定的智能行为和专业能力。
1.基座模型优化
- 日常工作:在现有基座模型基础上进行算法级优化。包括探索新型模型架构(如MOE、Mamba),研究ScalingLaw,优化注意力机制,以及通过算法改进提升模型在特定领域(如代码、数学)的推理能力和泛化性能。
- 新手友好度:(极低)需要对深度学习理论和模型架构有深刻理解
- 优势:处于技术前沿,容易产出高价值的专利或论文。
- 避雷:避免只做简单的超参数调整,要追求算法层面的创新。
2.后训练(SFT/RLHF)
- 日常工作:包负责大模型的对齐(Alignment)工作。包括设计和构建高质量的指令微调(SFT)数据集,实施基于人类反馈的强化学习(RLHF)流程,训练奖励模型(RewardModel),通过算法优化使模型输出更符合人类偏好、更安全、更有用。
- 新手友好度:(中等)需要涉及算法与数据工程的结合
- 优势:决定模型的产品化体验,是当前落地的关键环节。
- 避雷:避免只做数据标注的管理,要深入理解对齐算法的原理。
3.多模态
- 日常工作:研究和开发跨模态的模型能力。包括设计视觉-语言(VLM)等跨模态模型架构实现图像、视频、语音与文本的联合建模与理解,解决多模态数据的对齐、融合与生成问题。
- 新手友好度:(中等)需熟悉CV、NLP等多个领域的技术。
- 优势:技术想象空间大,是下一代AI的重要方向。
- 避雷:避免做简单的多模态特征拼接,要追求深度融合。
🥉第三梯队:人上人
这是目前市场需求最大、最能直接创造商业价值的领域,也是大多数工程师的首选。
应用开发工程师(AIAgent/行业解决方案)
- 日常工作:基于大模型API或开源模型,开发具体的AI应用产品。包括设计和实现智能体(Agent)的规划与执行逻辑,构建检索增强生成(RAG)系统,进行向量数据库的集成与优化,以及将AI能力嵌入到具体的业务场景(如客服营销、办公)中。
- 新手友好度:(高)更看重工程实现和业务理解能力
- 优势:需求旺盛,薪资可观,能快速积累项目经验。
- 避雷:避免只做简单的API封装(套壳),要深入理解Agent的工作流编排和复杂系统的调试。
📊第四梯队:NPC
这些岗位虽然不直接主导模型研发,但却是大模型稳定运行和高质量输出的基石。
1.数据工程师(大模型方向)
- 日常工作:构建大模型训练所需的数据流水线。包括海量多源异构数据的采集、清洗、去重、脱敏、格式化处理,以及数据质量的评估与监控,确保输入模型的数据是高质量且合规的。
- 新手友好度:(高)。具备扎实的数据处理技能即可入门。
- 优势:需求稳定,技术栈通用(Python,SOL,大数据生态)
- 避雷:避免只做重复性的体力劳动,要关注数据质量对模型效果的影响机制。
2.风控/安全
- 日常工作:负责大模型的内容安全与合规。包括设计和实施敏感词过滤、对抗攻击(越狱)防御机制,构建安全评测体系,确保模型生成内容无害、无偏见、符合法律法规。
- 新手友好度:内容安全策略。(中等)。需要熟悉NLP技术及
- 优势:随着监管趋严,岗位重要性日益提升。
- 避雷:避免规则过于僵化影响用户体验,要在安全与可用性间找平衡。
3.模型评估
- 日常工作:建立大模型的评测体系。包括设计评测指标和基准(Benchmark),开发自动化评测脚本,组织人工评测,从准确性、安全性、有用性等多个维度对模型能力进行量化分析,并输出改进建议。
- 新手友好度:(中等)。需要严谨的逻辑和数据分析能力。
- 优势:能全局视角理解模型优缺点。
- 避雷:避免评测脱离实际业务场景,要让数据驱动研发迭代。
🎣第五梯队:拉
这是一个门槛较低但天花板明显的岗位,适合作为切入点,但不适合作为终点。
Prompt工程师/优化师
- 日常工作:设计、测试、优化和固化提示词(Prompt),通过调整输入指令的结构和内容挖掘大模型在特定任务上的潜力,编写提示词模板库以实现标准化输出。
- 新手友好度:(极高)。对编程要求低,对语感和逻辑有要求
- 优势:上手极快,能迅速建立对模型能力的直观认知。
- 避雷:天花板低,可替代性强。切记:不要长期停留在此岗位,必须尽快向应用开发或算法方向转型。
🎈写给转型路上的程序员:机遇与行动指南
当下的大模型领域,正处于“技术快速迭代、需求爆发增长、人才供给不足”的黄金发展期。从全球范围来看,欧美国家凭借早期的技术积累,在大模型底层架构与核心算法上占据优势,而中国则在大模型的行业应用与场景落地方面走在前列——目前国内已有超过100家企业推出自研大模型,覆盖金融、医疗、工业、教育等20多个行业,初步形成了“技术研发+场景落地”的产业生态。
与此同时,国内大模型领域的人才缺口也日益凸显。据IDC统计,2025年中国大模型相关岗位的人才需求将超过50万,而目前具备实战能力的专业人才不足10万,尤其是中高级人才(如能独立负责大模型项目的工程师、具备跨行业落地经验的产品经理) ,更是“一才难求”。对于传统程序员而言,这正是“换道超车”的绝佳机会——你的编程基础、工程化经验,都是转型大模型领域的宝贵财富,只需补充针对性的知识与技能,就能快速填补人才缺口,实现职业升级。
如果你仍在迷茫“如何入门”,不妨从“系统学习”入手——选择一套涵盖“基础知识+工具实践+项目实战”的大模型学习路线,明确每个阶段的学习重点,避免盲目跟风。记住,大模型领域不缺“了解概念”的人,缺的是“能解决问题”的人——只有通过持续学习与实战,将技术转化为实实在在的项目能力,才能在激烈的竞争中站稳脚跟。
最后想对你说:AI浪潮不会淘汰程序员,只会淘汰“不愿改变”的程序员。
小白/程序员如何系统学习大模型LLM?
作为在一线互联网企业深耕十余年的技术老兵,我经常收到小白和程序员朋友的提问:“零基础怎么入门大模型?”“自学没有方向怎么办?”“实战项目怎么找?”等问题。难以高效入门。
这里为了帮助大家少走弯路,我整理了一套全网最全最细的大模型零基础教程。涵盖入门思维导图、经典书籍手册、实战视频教程、项目源码等核心内容。免费分享给需要的朋友!

👇👇扫码免费领取全部内容👇👇

1、我们为什么要学大模型?
很多开发者会问:大模型值得花时间学吗?答案是肯定的——学大模型不是跟风追热点,而是抓住数字经济时代的核心机遇,其背后是明确的行业需求和实打实的个人优势:
第一,行业刚需驱动,并非突发热潮。大模型是AI规模化落地的核心引擎,互联网产品迭代、传统行业转型、新兴领域创新均离不开它,掌握大模型就是拿到高需求赛道入场券。
第二,人才缺口巨大,职业机会稀缺。2023年我国大模型人才缺口超百万,2025年预计达400万,具备相关能力的开发者岗位多、薪资高,是职场核心竞争力。
第三,技术赋能增效,提升个人价值。大模型可大幅提升开发效率,还能拓展职业边界,让开发者从“写代码”升级为“AI解决方案设计者”,对接更高价值业务。
对于开发者而言,现在入门大模型,不仅能搭上行业发展的快车,还能为自己的职业发展增添核心竞争力——无论是互联网大厂的AI相关岗位,还是传统行业的AI转型需求,都在争抢具备大模型技术能力的人才。


人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
2、大模型入门到实战全套学习大礼包分享
最后再跟大家说几句:只要你是真心想系统学习AI大模型技术,这份我耗时许久精心整理的学习资料,愿意无偿分享给每一位志同道合的朋友。
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
部分资料展示
2.1、 AI大模型学习路线图,厘清要学哪些
对于刚接触AI大模型的小白来说,最头疼的问题莫过于“不知道从哪学起”,没有清晰的方向很容易陷入“东学一点、西补一块”的低效困境,甚至中途放弃。
为了解决这个痛点,我把完整的学习路径拆解成了L1到L4四个循序渐进的阶段,从最基础的入门认知,到核心理论夯实,再到实战项目演练,最后到进阶优化与落地,每一步都明确了学习目标、核心知识点和配套实操任务,带你一步步从“零基础”成长为“能落地”的大模型学习者。后续还会陆续拆解每个阶段的具体学习内容,大家可以先收藏起来,跟着路线逐步推进。

L1级别:大模型核心原理与Prompt

L1阶段: 将全面介绍大语言模型的基本概念、发展历程、核心原理及行业应用。从A11.0到A12.0的变迁,深入解析大模型与通用人工智能的关系。同时,详解OpenAl模型、国产大模型等,并探讨大模型的未来趋势与挑战。此外,还涵盖Pvthon基础、提示工程等内容。
目标与收益:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为AI应用开发打下坚实基础。
L2级别:RAG应用开发工程

L2阶段: 将深入讲解AI大模型RAG应用开发工程,涵盖Naive RAGPipeline构建、AdvancedRAG前治技术解读、商业化分析与优化方案,以及项目评估与热门项目精讲。通过实战项目,提升RAG应用开发能力。
目标与收益: 掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。
L3级别:Agent应用架构进阶实践

L3阶段: 将 深入探索大模型Agent技术的进阶实践,从Langchain框架的核心组件到Agents的关键技术分析,再到funcation calling与Agent认知框架的深入探讨。同时,通过多个实战项目,如企业知识库、命理Agent机器人、多智能体协同代码生成应用等,以及可视化开发框架与IDE的介绍,全面展示大模型Agent技术的应用与构建。
目标与收益:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。
L4级别:模型微调与私有化大模型

L4级别: 将聚焦大模型微调技术与私有化部署,涵盖开源模型评估、微调方法、PEFT主流技术、LORA及其扩展、模型量化技术、大模型应用引警以及多模态模型。通过chatGlM与Lama3的实战案例,深化理论与实践结合。
目标与收益:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。
2.2、 全套AI大模型应用开发视频教程
从入门到进阶这里都有,跟着老师学习事半功倍。

2.3、 大模型学习书籍&文档
收录《从零做大模型》《动手做AI Agent》等经典著作,搭配阿里云、腾讯云官方技术白皮书,帮你夯实理论基础。

2.4、 AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

2.5、大模型大厂面试真题
整理了百度、阿里、字节等企业近三年的AI大模型岗位面试题,涵盖基础理论、技术实操、项目经验等维度,每道题都配有详细解析和答题思路,帮你针对性提升面试竞争力。

【大厂 AI 岗位面经分享(107 道)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

2.6、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

适用人群

四阶段学习规划(共90天,可落地执行)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
-
硬件选型
-
带你了解全球大模型
-
使用国产大模型服务
-
搭建 OpenAI 代理
-
热身:基于阿里云 PAI 部署 Stable Diffusion
-
在本地计算机运行大模型
-
大模型的私有化部署
-
基于 vLLM 部署大模型
-
案例:如何优雅地在阿里云私有部署开源大模型
-
部署一套开源 LLM 项目
-
内容安全
-
互联网信息服务算法备案
-
…
👇👇扫码免费领取全部内容👇👇

3、这些资料真的有用吗?
这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

4万+

被折叠的 条评论
为什么被折叠?



