作者:K.Fire | 来源:3DCV
加我微信:cv3d007, 邀请你加入SLAM交流群,备注:加群+SLAM
1 前言
SLAM(The Simultaneous Localisation and Mapping)中文的意思是同时定位和地图绘制,即将一个移动机器人(也可以是水下机器人(ROV)或者无人机(UAV))放置于一个位置环境中的一个未知位置,在没有先验图的情况下,机器人可以自主地逐步构建周围环境的一致地图,同时可以在环境中确定自身的位置。SLAM问题自90年代提出以来,被视作移动机器人领域的“圣杯”,它是使机器人完全实现自主的手段,是机器人的核心技术之一。
对于SLAM技术的研究目前已经发展的比较成熟,框架也比较完善,但在技术落地的过程中免不了会遇到各种各样的问题,学者将不同的方法引入SLAM框架进行完善,进而产生了各种各样的SLAM方法,ActiveSLAM就是其中一种。
本篇文章先简单介绍SLAM框架,然后会通过一个例子简要介绍ActiveSLAM的应用场景,最后会对ActiveSLAM问题以及他的解决方案进行阐述。
2 SLAM简述
一个经典的视觉SLAM框架由五部分组成:传感器的信息读取、前端的视觉里程计、后端的优化、回环检测、建图。
-
传感器信息读取:在视觉SLAM中主要为相机图像信息的读取和预处理,在机器人系统中还包括编码器、IMU等其他传感器信息的读取和融合。
-
前端视觉里程计(VO):用于估算相邻图像间相机的运动以及局部