基于局部表面特征在杂乱场景中的三维物体识别

本文深入研究了在杂乱场景中基于局部表面特征的三维物体识别方法。针对遮挡和干扰,文章分析了3D关键点检测、局部表面特征描述和表面匹配三个阶段,强调局部特征方法的鲁棒性。文中详细探讨了固定和自适应尺度关键点检测技术,并列举了相关方法,如基于曲率和表面变化的检测算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文标题:3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey

作者:Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan

论文地址:在公众号「3D视觉工坊」,后台回复「三维物体」,即可直接下载。

摘要:在杂乱场景中进行三维目标识别是一个迅速发展的研究领域。根据使用的特征类型,三维物体识别方法大致可分为两类:基于全局特征的方法和基于局部特征的方法。密集的基于局部地物特征的方法对遮挡和杂波有较强的鲁棒性经常出现在现实世界的场景中。本文对现有的局部地物进行了综合研究三维物体识别方法。这些方法一般包括三个阶段:三维关键点检测、局部表面特征描述和表面匹配。

一 引言

在杂乱的场景中,物体识别是在计算机视觉研究领域的一个基础。它有很多应用,比如智能监控,自动装配,遥感,移动操作,机器人,生物特征分析和医学治疗。在过去的几十年中,二维物体识别得到了广泛的应用,目前比较成熟的研究区域[1]。与二维图像相比,距离图像都显示出了对象识别的几个优点。例如,(i)和2D图像相比,距离图像提供更多的几何信息。距离图像也编码表面度量尺寸比较明确。(ii)距离图像通常不受尺度的影响,旋转和照明。(iii) 与二维图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值