LeetCode 0007 -- 整数反转

本文介绍了一种有效的32位有符号整数反转算法,通过逐位构建反转整数并检查溢出,确保了算法的正确性和高效性。适用于编程竞赛和实际应用。

整数反转

题目描述

给出一个32位的有符号整数,你需要将这个整数中每位上的数字进行反转。

示例 1:

输入: 123
输出: 321

示例 2:

输入: -123
输出: -321

示例 3:

输入: 120
输出: 21

注意:

假设我们的环境只能存储得下32位的有符号整数,则其数值范围为 [−231, 231 − 1]。请根据这个假设,如果反转后整数溢出那么就返回 0。

解题思路

个人AC

每次构建反转整数的一位数字,并且在向原整数加一位数字前检查是否会溢出。

public class Solution {
    
    public int reverse(int x) {
        int res = 0;
        while (x != 0) {
            int digit = x % 10;
            x /= 10;
            // Integer.MAX_VALUE is 2147483647
            if (res > Integer.MAX_VALUE / 10 || (res == Integer.MAX_VALUE / 10 && digit > 7)) 
                return 0;
            // Integer.MIN_VALUE is -2147483648
            if (res < Integer.MIN_VALUE / 10 || (res == Integer.MIN_VALUE / 10 && digit < -8))
                return 0;
            res = res * 10 + digit;
        }
        return res;
    }
}

时间复杂度: O(lg(x)) 。

空间复杂度: O(1)。

最优解

同上。

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值