- 求下列函数的极限:
(1) lim k → 0 ∫ 0 π 2 d φ 1 − k 2 s i n 2 φ \lim_{k\to0}\int_0^{\frac{\pi}{2}}\frac{d\varphi}{\sqrt{1-k^2sin^2\varphi}} limk→0∫02π1−k2sin2φdφ
(2) lim k → 1 − 0 ∫ 0 π 2 1 − k 2 s i n 2 φ d φ \lim_{k\to1-0}\int_0^{\frac{\pi}{2}}\sqrt{1-k^2sin^2\varphi}d\varphi limk→1−0∫02π1−k2sin2φdφ
(3) lim α → 0 ∫ α α + π 2 s i n 2 x 4 + α x 2 d x \lim_{\alpha\to0}\int_\alpha^{\alpha+\frac{\pi}{2}}\frac{sin^2x}{4+\alpha x^2}dx limα→0∫αα+2π4+αx2sin2xdx
(4) lim α → 0 ∫ 0 1 + α d x 1 + x 2 + α 2 \lim_{\alpha\to0}\int_0^{1+\alpha}\frac{dx}{1+x^2+\alpha^2} limα→0∫01+α1+x2+α2dx
(5) lim y → 0 ∫ 0 1 e x s i n x y y + 1 d x \lim_{y\to0}\int_0^1\frac{e^xsinxy}{y+1}dx limy→0∫01y+1exsinxydx
解:
(1) 二元函数 1 1 − k 2 s i n 2 φ \frac{1}{\sqrt{1-k^2sin^2\varphi}} 1−k2sin2φ1在 [ 0 , π 2 ] × [ − 1 2 , 1 2 ] [0,\frac{\pi}{2}]\times[-\frac{1}{2},\frac{1}{2}] [0,2π]×[−21,21]上连续,所以 lim k → 0 ∫ 0 π 2 d φ 1 − k 2 s i n 2 φ = ∫ 0 π 2 lim k → 0 d φ 1 − k 2 s i n 2 φ = π 2 \lim_{k\to0}\int_0^{\frac{\pi}{2}}\frac{d\varphi}{\sqrt{1-k^2sin^2\varphi}}=\int_0^{\frac{\pi}{2}}\lim_{k\to0}\frac{d\varphi}{\sqrt{1-k^2sin^2\varphi}}=\frac{\pi}{2} limk→0∫02π1−k2sin2φdφ=∫02πlimk→01−k2sin2φdφ=2π
(2) 二元函数 1 − k 2 s i n 2 φ \sqrt{1-k^2sin^2\varphi} 1−k2sin2φ在 [ 0 , π 2 ] × [ 0 , 1 ] [0,\frac{\pi}{2}]\times[0,1] [0,2π]×[0,1]上连续,所以 lim k → 1 − 0 ∫ 0 π 2 1 − k 2 s i n 2 φ d φ = ∫ 0 π 2 lim k → 1 − 0 1 − k 2 s i n 2 φ d φ = ∫ 0 π 2 c o s φ d φ = 1 \lim_{k\to1-0}\int_0^{\frac{\pi}{2}}\sqrt{1-k^2sin^2\varphi}d\varphi=\int_0^{\frac{\pi}{2}}\lim_{k\to1-0}\sqrt{1-k^2sin^2\varphi}d\varphi=\int_0^{\frac{\pi}{2}}cos\varphi d\varphi=1 limk→1−0∫02π1−k2sin2φdφ=∫02πlimk→1−01−k2sin2φdφ=∫02πcosφdφ=1
(3) 二元函数 s i n 2 x 4 + α x 2 \frac{sin^2x}{4+\alpha x^2} 4+αx2sin2x在 [ α , α + π 2 ] × [ − 1 , 1 ] [\alpha,\alpha+\frac{\pi}{2}]\times[-1,1] [α,α+2π]×[−1,1]上连续,所以 lim α → 0 ∫ α α + π 2 s i n 2 x 4 + α x 2 d x = ∫ 0 π 2 s i n 2 x 4 d x = π 16 \lim_{\alpha\to0}\int_\alpha^{\alpha+\frac{\pi}{2}}\frac{sin^2x}{4+\alpha x^2}dx=\int_0^{\frac{\pi}{2}}\frac{sin^2x}{4}dx=\frac{\pi}{16} limα→0∫αα+2π