单层卷积神经网络
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
"""加载样本集:手写数字"""
mnist = input_data.read_data_sets('data/', one_hot=True)
"""卷积神经网络"""
X = tf.placeholder('float', [None, 28, 28, 1])
y = tf.placeholder('float', [None, 10])
W_conv = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
b_conv = tf.Variable(tf.constant(.1, shape=[32]))
h_conv = tf.nn.conv2d(input=X, filter=W_conv, strides=[1, 1, 1, 1], padding='SAME') + b_conv
h_relu = tf.nn.relu(h_conv)
h_pool = tf.nn.max_pool(h_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
h_flat = tf.reshape(h_pool, [-1, 14 * 14 * 32])
W_fc1 = tf.Variable(tf.truncated_normal([14 * 14 * 32, 256], stddev=.1))
b_fc1 = tf.Variable(tf.constant(.1, shape=[256]))
h_fc1 = tf.matmul(h_flat, W_fc1) + b_fc1
h_fc1 = tf.nn.relu(h_fc1)
W_fc2 = tf.Variable(tf.truncated_normal([256, 10], stddev=.1))
b_fc2 = tf.Variable(tf.constant(.1, shape=[10])<