区间[0,1]的各种函数图像(不定更)

本文通过Matplotlib展示不同参数下的二次函数图形,包括凹凸特性及对称轴变化,同时利用Scikit-Learn的高斯过程回归进行数据拟合,展示了从点集预测连续函数的过程。

对称轴x=0.5凹

from matplotlib import pyplot as mp

def quadratic(x, n=2):
    return (2 * x - 1) ** n

w = [i / 400 for i in range(401)]
mp.figure(figsize=(5, 5))
mp.scatter([0, .5, 1], [1, 0, 1], s=75, color='b', alpha=.3)
mp.plot(w, [quadratic(i) for i in w], color='b', alpha=.2)
mp.plot(w, [quadratic(i, 4) for i in w], color='b', alpha=.2)
mp.plot(w, [quadratic(i, 8) for i in w], color='b', alpha=.2)
mp.plot(w, [quadratic(i, 16) for i in w], color='b', alpha=.2)
mp.show()

对称轴x=0.5凸

from matplotlib import pyplot as mp

def quadratic(x, n=2):
    return 1 - (2 * x - 1) ** n

w = [i / 400 for i in range(401)]
mp.figure(figsize=(5,
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小基基o_O

您的鼓励是我创作的巨大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值