[leetcode]95. Unique Binary Search Trees II

本文介绍了一种使用动态规划思想解决生成所有唯一二叉搜索树的方法。通过对递归算法的优化,利用缓存避免重复计算,并结合BST的特性减少不必要的工作。

题目链接:95. Unique Binary Search Trees II

Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1…n.

For example,
Given n = 3, your program should return all 5 unique BST’s shown below.
BST example

读完这道题目,显然这道题的解法一定含有递归的元素在内。因为我们如果想要知道n个结点的所有BST排列方法,则一定要知道(n-1)个结点情况下的所有BST排列方法,则进一步需要(n-2)个结点情况下的所有BST排列方法。但同时我们也注意到,如果用简单的递归思路去做的话,会不断重复求解子问题。这就影响了算法的效率。那么很自然就想到用动态规划的思路去解决这个问题了。(动态规划的思想是什么?记忆(cache),时间换空间,不求重复解,由交叠子问题从较小问题逐步决策从而构造较大子问题的解,进而得出整个问题的解)。其满足动态规划的两大要素:交叠子问题(overlapping subproblems)(要想求n需要求n-1, n-2, … 而要想求n-1需要先求n-2, n-3, …)和最优子结构(optimal substructure)。
那么接下来就是要思考具体如何安排交叠子问题和最优子结构了。

我们知道树的结构使其天然地适合使用递归的算法。
同时,我们如果想要知道n个结点的全部BST,则我们需要考虑这n个结点每一个作为根结点时的情况。例如我们使用第i个结点作为根结点,那么此时就产生了两个子问题:左子树怎么安排?右子树怎么安排?根据BST的性质,左子树也就是第1到i-1个结点构成的所有BST,右子树也就是从第i+1到第n个结点构成的所有BST。到这一步,交叠子问题和最优子结构就很明确了。
根据以上分析,我们得出以下递归算法:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<TreeNode> generateTrees(int n) {
        /*
        If we want to know all different BST of n nodes, we may need to consider the condition in which each of the node can be the root. And in each conditon, we need to consider 2 subproblems, which is the left subtree and right subtree. If we use, say, the ith node to be the root, than we have to consider how left subtrees contain nodes 0 to i-1 look like and how right subtrees contain nodes i+1 through n look like. Then we have subproblem of subproblem. Apparently this is a dynamic programming problem. We could use cache to reduce the run time, which, in this case, is to cache the different subtree structures of nodes. 
        */
        if (n == 0){
            List<TreeNode> result = new ArrayList<TreeNode>();
            return result;
        }
        int[] numoftree = numOfBST(n);

        TreeNode[] resultarr = generateSubTrees(1, n, numoftree);

        List<TreeNode> result= new ArrayList<TreeNode>();

        for (int i = 0; i < resultarr.length; i++) {
            result.add(resultarr[i]);
        }
        return result;
    }

    private TreeNode[] generateSubTrees(int start, int end, int[] dp) {
        TreeNode[] resultarr = new TreeNode[dp[end - start + 1]];
        int currpos = 0;
        if (start > end) {
            resultarr[0] = null;
            return resultarr;
        }
        for (int i = start; i <= end; i++) {
            TreeNode[] nodeL = generateSubTrees(start, i - 1, dp);
            TreeNode[] nodeR = generateSubTrees(i + 1, end, dp);
            for (TreeNode nodel : nodeL) {
                for (TreeNode noder : nodeR) {
                    TreeNode root = new TreeNode(i);
                    root.left = nodel;
                    root.right = noder;
                    resultarr[currpos] = root;
                    currpos++;
                }
            }
        }
        return resultarr;
    }

    private int[] numOfBST(int n) {
        /*
        use dynamic programming to calculate the number of different BST
        */
        int[] num = new int[n+1];
        num[0] = 1;
        if (n == 0){
            return num;
        }
        num[1] = 1;
        for (int i = 2; i <= n; i++){
            for (int j = 1; j <= i; j++){
                num[i] += num[j - 1] * num[i - j];
            }
        }
        return num;
    }
}

以上方法是没有使用记忆的。根据之前的分析,在这个算法中使用记忆需要构造一个三维数组。其中前两位分别对应BST的开始结点和结束结点的信息,第三位保存这些结点构成的BST。如下所示:

List<List<List<TreeNode>>> BSTcache = new ArrayList<List<List<TreeNode>>>;

我们可以使用如下方法来进行初始化操作:

for (int i = 0; i < n; i++){
    List<List<TreeNode>> yrow = new ArrayList<List<TreeNode>>(n);
    BSTcache.add(yrow);
    for(int j = 0; j < n; j++){
        List<TreeNode> zrow = new ArrayList<TreeNode>();
        BSTcache.get(i).add(zrow);
    }
}

这样我们就创造了一个前两维为 nn 而第三维大小不定的三维动态数组。我们用BSTcache.get(i).get(j)即可取出从第i个结点开始到第j个结点结束的所有BST构成的ArrayList。
然而这样做太过麻烦。

根据cracking the coding interview中的优化理念,我们首先考虑优化BUD(Bottleneck, Unnecessary work, Duplicated work)。显然其中的Duplicated work已经在动态规划的缓存这一步被解决了。而Bottleneck又不是很明显,那么只能寻找Unnecessary work了。
根据BST的对称性(既:i+1到n结点构成的BST和从1到n-i结点构成的DST结构完全相同,只有结点数值的区别。)那么我们可以用这一点减少数组的一个维度,只用二位数组来缓存。既数组的第一个维度i代表从第1个结点到第i个结点,第二个维度存储从第1到第i个结点的所有BST。通过这种方法,我们解决了Unnecessary work。
之所以代码中只对右子树使用clone方法,是因为只有右子树中的结点的值需要被改变(原因如上)。而offset参数即是需要改变的大小。
如以下代码所示:

public class Solution{
    public List<TreeNode> generateTrees(int n) {
        List<TreeNode>[] result = new List[n+1];
        result[0] = new ArrayList<TreeNode>();
        result[0].add(null);
        if (n == 0){
            //OJ requires to return [], so we cannot just return result[0] which is [[]].
            return new ArrayList<TreeNode>();
        }

        for (int len = 1; len <= n; len++){
            //result[i] stores the root of different BSTs for node number equals i
            //since we don't know how many different BSTs are there, we use ArrayList to store roots
            result[len] = new ArrayList<TreeNode>();
            for (int j = 0; j < len; j++){
                //use result j as left subtree and j+1 as the root
                for (TreeNode nodeL : result[j]){
                    for (TreeNode nodeR : result[len - 1 - j]){
                        //use result j+1(not included) through len as the right subtree, however, the tree structure of result j+1 through len is similar to 0 through len-1-j while only the node values have a difference of j+1
                        TreeNode root = new TreeNode(j+1);
                        root.left = nodeL;
                        //since we are using result[len-1-j] as the right subtree, we only have to change the values of each node with the clone method.
                        root.right = clone(nodeR, j + 1);
                        result[len].add(root);
                    }
                }
            }
        }
        return result[n];
    }
    private static TreeNode clone(TreeNode node, int offset){
        //change the value of each node to val+offset
        if (node == null){
            return null;
        }
        TreeNode root = new TreeNode(node.val + offset);
        root.left = clone(node.left, offset);
        root.right = clone(node.right, offset);
        return root;
    }
}
1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耀凯考前突击大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值