C++ 用遗传算法解决TSP问题,旅行商问题

本文介绍了一个简陋的遗传算法实验,该实验仅包含交叉(交配)操作,且种群仅由两个个体组成。算法在迭代次数达到预设值后停止,适用于解决旅行商问题(TSP)。通过不断交换个体之间的基因片段,算法尝试寻找最优路径。

这也是人工智能实验的一个题目

  • 这是一个很简陋的遗传算法版本,只有交叉(交配)
  • 因为种群个体只有2个
  • 迭代次数到达后即停止
//@edit 2018/11/29
#include<iostream>
#include<fstream>
using namespace std;
const int CITY_NUM = 7;    //走过城市数量 0 x x x x x 0 
const int RAND_GENE = 2;
float city_dis[CITY_NUM-1][CITY_NUM-1];
class individual
{
public:
    int gene[CITY_NUM];     //个体基因,从城市0开始出发,到0结束
    float fitness;          //适应度,20.0/distance
    int distance;           //计算当前基因(路线)下的总距离
    individual(int gene0,int gene1,int gene2,int gene3,int gene4)
    {//初始化基因
        gene[0]=gene0;
        gene[1]=gene1;
        gene[2]=gene2;
        gene[3]=gene3;
        gene[4]=gene4;
        //基因传递后执行update函数(计算fitness和distance)
        update_info();
    }
    individual(int gene0,int gene1,int gene2,int gene3,int gene4,int gene5,int gene6)
    {//初始化基因 //7
        gene[0]=gene0;
        gene[1]=gene1;
        gene[2]=gene2;
        gene[3]=gene3;
        gene[4]=gene4;
        gene[5]=gene5;
        gene[6]=gene6;
        //基因传递后执行update函数(计算fitness和distance)
        update_info();
    }
    void set_new_gene(int *new_gene)
    {//mid part gene
        for(int i=1;i<CITY_NUM-1;++i)
        {
            this->gene[i] = new_gene[i-1];//gene和传递进来到new_gene开始计数值不同
        }
        update_info();//更新个体fitness和distance
    }
    void update_info()
    {//更新fitness和distance的函数
        int new_dis = 0;
        for(int i=0;i<CITY_NUM-1;++i)
        {
            new_dis += city_dis[this->gene[i]][this->gene[i+1]];
        }
        this->distance  = new_dis;
        this->fitness = 20.0/this->distance;
    }
};
class tsp
{
public:
    int generation_counts;  //迭代次数,控制循环结束时间
    int best_route[CITY_NUM];      //存储目前最好的个体(路线)
    int best_distance;      //最好个体的路线距离
    float best_fitness;     //其适应度
    individual *father1;    //初始个体1(路线1
    individual *father2;    //初始个体2(路线2
    tsp()
    {
        generation_counts = 100;                //迭代次数500次  
        best_distance = 0;                      
        best_fitness = 0;
        load_city_distance();                   //从文件加载城市距离
        //father1 = new individual(0,2,1,3,0);    //初始化个体1
        father1 = new individual(0,1,2,3,4,5,0);
            //try rand father sequence //取消下面备注则会生成随机的基因给初始个体
            // int rand1[3];
            // get_random_nums(rand1,3);
            // father1->set_new_gene(rand1);
        //father2 = new individual(0,1,3,2,0);    //初始化个体2
        father2 = new individual(0,2,3,1,5,4,0);
            // int rand2[3];
            // get_random_nums(rand2,3);
            // father2->set_new_gene(rand2);
    }
    ~tsp()
    {//析构函数
        delete father1;
        delete father2;
    }
    void start_generate()
    {//迭代总函数
        srand(time(NULL));                      //取随机数用
        while(--generation_counts >= 0)         //
        {
            cout<<"迭代:"<<generation_counts<<endl;
            get_best_fornow();                  //获取当前种群最好个体
            switch_part_genes();                //交换两个体的随机2个基因,开始和结束的0基因不参加交换
        }
    }
    void get_best_fornow()
    {//判断当前种群是否比已有的best个体更优,有则替换
        individual *now_the_best;
        if(father1->fitness > father2->fitness)
        {//找到两个个体最优,并用指针指向它
            now_the_best = father1;
        }
        else
        {
            now_the_best = father2;
        }
        if(now_the_best->fitness > this->best_fitness)
        {//better one will replace the original best individual
            for(int i=0;i<CITY_NUM;++i)
            {
                this->best_route[i] = now_the_best->gene[i];//替换基因
            }
            this->best_distance = now_the_best->distance;   //替换distance
            this->best_fitness = now_the_best->fitness;     //替换fitness
        }
    }
    void switch_part_genes()
    {//switch 2 random genes in individual
        int gene_place1[2];
        int gene_place2[2];
        get_random_nums(gene_place1,2);//生成1-citynum-2范围中2个不同随机数给place1
        get_random_nums(gene_place2,2);//生成1-citynum-2中2个不同随机数给place2
        
        //start to switch
        swap_gene(gene_place1,gene_place2);//交换基因
        father1->update_info();//更新个体信息
        father2->update_info();

        //for test
        cout<<"\tf1 gene:";
        for(int i=0;i<CITY_NUM;++i)
            cout<<father1->gene[i];
        cout<<" fit:"<<father1->fitness<<endl;
        cout<<"\tf2 gene:";
        for(int i=0;i<CITY_NUM;++i)
            cout<<father2->gene[i];
        cout<<" fit:"<<father2->fitness<<endl;
    }
    void swap_gene(int loc1[2],int loc2[2])
    {   //loc1 is for father1;loc 2 for father 2
        //用loc1中的2个father1基因位置来交换loc2中2个father2基因的位置
        // cout<<loc1[0]<<" "<<loc1[1]<<endl;
        // cout<<loc2[0]<<" "<<loc2[1]<<endl;
        for(int i=0;i<2;++i)
        {   //father1[i] <-> father2[i] 
            int temp_father1_gene = father1->gene[loc1[i]];
            father1->gene[loc1[i]] = father2->gene[loc2[i]];
            father2->gene[loc2[i]] = temp_father1_gene;
        }
        clear_conflict(father1);//交换后可能出现冲突 比如01220这种序列,需要处理冲突
        clear_conflict(father2);
    }
    void clear_conflict(individual *ptr)
    {
        bool flag=false;
        for(int i=1;i<CITY_NUM;++i)
        {
            if(i==CITY_NUM-1)
            {
                if(flag == true)
                {
                    i=0;
                    flag = false;
                    continue;
                }
                else
                {
                    continue;
                }
            }
            int conf_loc = has_conflict(ptr->gene,i,ptr->gene[i]);
            if(conf_loc == -1)
                continue;
            
            //has conflict
            flag = true;
            ++ptr->gene[i];
            if(ptr->gene[i] == 6)
                ptr->gene[i] = 1;
            --i; 

        }
        return;
    }
    int has_conflict(int gene[CITY_NUM],int place,int target)
    {   //可能冲突位置只有123,0和4固定为城市0,只要1和2、1和3、2和3都不冲突,即基因不冲突
        //不同返回值用于快速定位冲突位置
        for(int i=place+1;i<CITY_NUM;++i)
        {
            if(gene[i] == target)
                return i;
        }
        return -1;
    }
    bool get_random_nums(int *nums,int size)
    {//给nums数组生成size个不同随机数
        if(size <= 0)
        {
            return false;
        }
        if(size == 1)
        {
            nums[0] = rand()%3+1;//range 1-3
            return true;
        }
        //size >= 2;
        int range = CITY_NUM - 2;
        for(int i=0;i<size;++i)
        {//i is the target place
            nums[i] = rand()%range+1;
            for(int j=0;j<i;++j)
            {//j seeking the same number
                if(nums[i] == nums[j])
                {   
                    nums[i] = rand()%range+1;
                    j=-1;
                }
            }
        }
        return true;
    }
    void print_best_route()
    {
        cout<<"\nBEST ROUTE:";
        for(int i=0;i<CITY_NUM;++i)
        {
            cout<<best_route[i]<<" ";
        }
        cout<<endl;
        cout<<"DISTANCE:"<<this->best_distance<<endl;
        cout<<"FITNESS:"<<this->best_fitness<<endl;
    }
    void load_city_distance()
    {//从文件读取城市距离信息
        char in_data[50];
        ifstream in_stream;
        in_stream.open("ds.txt",ios::in);
        if(!in_stream.is_open())
            return;
        int j=0;
        int k=0;
        while(!in_stream.eof())
        {
            in_stream.getline(in_data,50);

            for(int i=0;i<50;++i)
            {
                if(in_data[i]>= '0' && in_data[i] <= '9')
                {
                    city_dis[j][k++] = in_data[i]-'0';
                    if(k==CITY_NUM-1)
                    {
                        k=0;
                        ++j;
                        break;
                    }
                }
            }
        }
        in_stream.close();
    }
};
int main()
{
    tsp tsp_demo;
    tsp_demo.start_generate();
    tsp_demo.print_best_route();
    return 0;
}

附测试截图
在这里插入图片描述
ds.txt 文件内容
0 1 3 4 2 4
1 0 2 5 1 2
3 2 0 3 4 3
4 5 3 0 3 1
2 1 4 3 0 5
4 2 3 1 5 0

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值