问题描述
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
- The input array won’t violate no-adjacent-flowers rule.
- The input array size is in the range of [1, 20000].
- n is a non-negative integer which won’t exceed the input array size.
问题分析
给定一个数组nums[],数组中有一些0,1.其中0,表示空,1表示非空。给定一个数n,表示n给1,将这n个1插入到nums中,要求相邻两个不能是1.返回结果表示成功与否。
遍历这个数组,满足条件,计数+1.同时跳两位,如果不满足,就跳一位。时间复杂度 O(n).
代码实现
public boolean canPlaceFlowers(int[] flowerbed, int n) {
if (n == 0) {
return true;
}
if (flowerbed.length < (2 * n - 1)) {
return false;
}
int i = 0;
int count = 0;
while (i < flowerbed.length) {
if (flowerbed[i] == 0 && (i == 0 || flowerbed[i - 1] == 0) && (i == flowerbed.length - 1 || flowerbed[i + 1] == 0)) {
flowerbed[i] = 0;
count++;
i++;
}
if (count >= n) {
return true;
}
i++;
}
return false;
}
总结
在思考的时候,尽可能使用统一 的循环,而不用对其中不同的情况进行列举,那样容易出错。