用python对数据进行正态性检验(Q-Q检验,KS检验,W检验,偏峰检验)

本文介绍了使用Python进行数据正态性检验的方法,包括Kolmogorov-Smirnov(KS)检验,Shapiro-Wilk(W)检验,以及通过Q-Q图进行的正态性检查。KS检验基于累积分布函数,用于测试样本是否符合特定理论分布或比较两个实际分布之间的显著差异。W检验是一种基于相关性的算法,计算得出的关联系数越接近1,表明数据越符合正态分布。正常性检验的结果包括Kstest的统计量和p值,ShapiroResult的统计量和p值,以及normaltest的统计量和p值。

Kolmogorov Smirnov test is based on the cumulative distribution function. It is used to test whether a distribution conforms to a certain theoretical distribution or compare whether there are significant differences between two empirical distributions. The original hypothesis is that the sample comes from a population subject to normal distribution
在这里插入图片描述
The full name of W test is Shapiro Wilk test, which is a correlation based algorithm. A correlation coefficient can be obtained by calculation. The closer it is to 1, the better it shows that the data fit the normal distribution. It is recommended by the national standard gb4882-85 to make the smallest type II error.

W test is a method to check whether the sample conforms to the normal distribution when the sample size is 8 ≤ n ≤ 50. (now the research has re

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值