采药

这是一个关于算法优化的问题,描述了一个孩子需要在限定时间内从多种草药中选择价值最大的组合。通过动态规划解决如何最大化草药的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。
医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,
这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,
在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
  如果你是辰辰,你能完成这个任务吗?


输入
第一行有两个整数T(1  < =  T  < =  1000)和M(1  < =  M  < =  100),用一个空格隔开,T代表总
共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)
的整数,分别表示采摘某株草药的时间和这株草药的价值。


输出

输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。


#include<stdio.h>
#include<string.h>
int main()
{
int T,M,i,j,t,w,dp[1005];
while(~scanf("%d%d",&T,&M))
{
memset(dp,0,sizeof(dp));

for(i=0;i<M;i++)
{
scanf("%d%d",&t,&w);
for(j=T;j>=t;j--)
{
if(dp[j]<dp[j-t]+w)
{
dp[j]=dp[j-t]+w;
}
}
}
printf("%d\n",dp[T]);
}
return 0;


### 采药背包问题算法实现 #### 状态定义 在处理采药背包问题时,状态通常被定义为 `dp[i][j]` 表示前 `i` 种草药,在总重量不超过 `j` 的情况下可以获得的大价值。这里 `i` 是草药品种索引,`j` 则表示当前考虑的背包容积。 为了简化空间复杂度,可以采用一维数组来代替二维数组进行迭代更新[^1]。 #### 初始化 初始化阶段设置当没有任何草药可选时的状态,即 `dp[j]=0` 对于所有的 `j∈[0,C]` 成立;其中 `C` 代表背包的大承重能力。 #### 状态转移方程 对于每一个新的草药种类 `i` 和其对应的体积 `c_i` 及价值 `w_i` ,遍历可能放入背包内的剩余容量 `j` (从大到小),并计算是否应该加入该草药: \[ dp[j] = max(dp[j], dp[j-c_i]+w_i)\] 此过程确保每次只针对新增加的一种草药做决策,并且通过逆序访问保证同一轮内不会重复利用已选取过的草药实例[^4]。 #### Python代码实现 下面给出基于上述分析的一个简单Python版本实现: ```python def knapsack(weights, values, capacity): n = len(values) # 创建一个长度为capacity+1的一维列表用于存储子问题的结果 dp = [0]*(capacity + 1) for i in range(n): # 遍历所有物品 for j in range(capacity, weights[i]-1, -1): dp[j] = max(dp[j], dp[j-weights[i]] + values[i]) return dp[-1] if __name__ == "__main__": # 测试样例数据输入 weight_list = [2, 3, 4, 5] value_list = [3, 4, 5, 8] bag_capacity = 5 result = knapsack(weight_list, value_list, bag_capacity) print(f"The maximum total value is {result}") ``` 这段程序实现了经典的01背包问题解决方案,适用于描述中的采药场景,其中每个位置只能放置一次特定类型的草药。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值