一些小结论

这篇博客涵盖了斐波那契数列的各种性质,包括求和公式、奇偶项求和以及平方求和等。还讨论了组合数的性质,如二项式系数的对称性和递推关系。在数论部分,提到了欧拉函数和高次幂求和的规律。最后,介绍了欧拉函数的一些特性以及n阶乘的极限近似公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

斐波那契数:

{ f 1 = 1 f 2 = 1 f i = f i − 1 + f i − 2 , i > 2 \begin{cases} f_1 = 1 & \text{} \\[2ex] f_2 = 1 \\[2ex] f_i = f_{i - 1} + f_{i - 2}, & \text{i > 2} \end{cases} f1=1f2=1fi=fi1+fi2,i > 2

  1. S n = f n + 2 − 1 S_n = f_{n + 2} - 1 Sn=fn+21 (其中 S n S_n Sn 表示前 n n n 项和)

  2. 奇数项求和: f 1 + f 3 + f 5 + ⋯ + f 2 n − 1 = f 2 n f_1 + f_3 + f_5 + \cdots + f_{2n - 1} = f_{2n} f1+f3+f5++f2n1=f2n

  3. 偶数项求和: f 2 + f 4 + f 6 + ⋯ + f 2 n = f 2 n + 1 − 1 f_2 + f_4 + f_6 + \cdots + f_{2n} = f_{2n + 1} - 1 f2+f4+f6++f2n=f2n+11

  4. 平方求和: f 1 2 + f 2 2 + f 3 2 + ⋯ + f n 2 = f n f n + 1 {f_1}^2 + {f_2} ^ 2 + {f_3} ^ 2 + \cdots + {f_n}^ 2 = {f_n}{f_{n+1}} f12+f22+f32++fn2=fnfn+1

  5. f n − 1 f n + 1 = f n 2 + ( − 1 ) n f_{n - 1} f_{n + 1} = {f_n}^2 + (-1)^n fn1fn+1=fn2+(1)n

  6. g c d ( f n , f m ) = f g c d ( n , m ) gcd (f_n, f_m) = f_{gcd(n, m)} gcd(fn,fm)=fgcd(n,m)

组合数相关:

(记得组合相关知识还没有总结…)

  1. C n 0 + C n 2 + ⋯ + C n 2 k = C n 1 + C n 3 + ⋯ + C n 2 k + 1 = 2 n − 1 {C_n^0} + {C_n^ 2} + \cdots + {C_n^{2k}} = {C_n^1} + {C_n^3} + \cdots + {C_n^{2k+1}} = 2 ^ {n-1} Cn0+Cn2++Cn2k=Cn1+Cn3++Cn2k+1=2n1 \\[2ex]
  2. ∑ i = 0 r C n + i i = C n + r + 1 r \sum\limits_{i = 0}^{r} {C_{n + i}^{i}} = C_{n + r + 1}^r i=0rCn+ii=Cn+r+1r \qquad 例如 C 6 0 + C 7 1 + C 8 2 + C 9 3 = C 10 3 {C_6^0} + {C_7^1} + {C_8^2} + {C_9^3} = {C_{10}^3} C60+C71+C82+C93=C103 \\[2ex]
  3. ∑ i = 0 r C n + i k = C n + r + 1 k + 1 \sum\limits_{i=0}^r {C_{n+i}^k} = C_{n+r+1}^{k+1} i=0rCn+ik=Cn+r+1k+1 \qquad 例如 C 4 4 + C 5 4 + C 6 4 + C 7 4 = C 8 5 {C_4^4} + {C_5^4} + {C_6^4} + {C_7^4} = {C_8^5} C44+C54+C64+C74=C85 \\[2ex]
  4. ∑ i = 0 n i ∗ C n i = n ∗ 2 n − 1 \sum\limits_{i = 0}^{n} i * {C_n^i} = n * 2 ^ {n-1} i=0niCni=n2n1 \\[2ex]
  5. ∑ i = 0 n i 2 ∗ C n i = n ∗ ( n + 1 ) ∗ 2 n − 2 \sum\limits_{i=0}^{n} {i^2} * {C_n^i} = n*(n+1) * {2^{n-2}} i=0ni2Cni=n(n+1)2n2 \\[2ex]
  6. ∑ i = 0 n ( C n i ) 2 = C 2 n n \sum\limits_{i=0}^{n} ({C_n^i}) ^ 2 = {C_{2n}^n} i=0n(Cni)2=C2nn
数论相关:
  • g c d ( 2 n − 1 , 2 m − 1 ) = 2 g c d ( n , m ) − 1 gcd(2 ^ n - 1, 2 ^ m - 1) = 2 ^ {gcd(n, m)} - 1 gcd(2n1,2m1)=2gcd(n,m)1
n 次 方 求 和 n 次方求和 n

其中 C n m C_n^m Cnm 表示组合数

1 k + 2 k + 3 k + ⋯ + n k = ∑ i = 1 n ( ( ∑ j = 0 i − 1   ( − 1 ) j   C i j   ( i − j ) k + 1 ) C n + 1 i + 1 ) 1^k + 2 ^ k + 3 ^ k + \cdots + n ^ k = \sum \limits_ {i = 1} ^ n \Biggl( \biggl( \sum \limits_{j = 0} ^ {i - 1} \, (-1)^j \, {C_i ^ j} \, (i - j) ^ {k + 1}\biggr) C_{n+1}^{i+1}\Biggr) 1k+2k+3k++nk=i=1n((j=0i1(1)jCij(ij)k+1)Cn+1i+1)

例如:
∑ i = 1 n i = C n + 1 2 = n ( n + 1 ) 2 \sum\limits_{i = 1} ^ n i = {C_{n + 1}^2} = \dfrac{n(n + 1)}{2} i=1ni=Cn+12=2n(n+1)

∑ i = 1 n i 2 = C n + 1 2 + 2 C n + 1 3 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{i = 1} ^ n {i^2} = {C_{n + 1}^{2}} + 2 {C_{n + 1}^{3}} = \dfrac{n(n + 1)(2n + 1)}{6} i=1ni2=Cn+12+2Cn+13=6n(n+1)(2n+1)

∑ i = 1 n i 3 = C n + 1 2 + 6 C n + 1 3 + 6 C n + 1 4 = n 2 ( n + 1 ) 2 4 \sum\limits_{i = 1} ^ n {i^3} = {C_{n + 1}^{2}} + 6 {C_{n + 1}^{3}} + 6 {C_{n + 1}^{4}} = \dfrac{{n^2}{(n + 1)^2}}{4} i=1ni3=Cn+12+6Cn+13+6Cn+14=4n2(n+1)2

∑ i = 1 n i 4 = C n + 1 2 + 14 C n + 1 3 + 36 C n + 1 4 + 24 C n + 1 5 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n − 1 ) 30 \sum\limits_{i = 1} ^ n {i ^ 4} = {C_{n + 1}^{2}} + 14 {C_{n + 1}^{3}} + 36 {C_{n + 1}^{4}} + 24 {C_{n + 1}^{5}} = \dfrac{n(n + 1)(2n + 1)(3{n^2} + 3n - 1)}{30} i=1ni4=Cn+12+14Cn+13+36Cn+14+24Cn+15=30n(n+1)(2n+1)(3n2+3n1)

∑ i = 1 n i 5 = C n + 1 2 + 30 C n + 1 3 + 150 C n + 1 4 + 240 C n + 1 5 + 120 C n + 1 6 = n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n − 1 ) 12 \sum\limits_{i = 1} ^ n {i^5} = {C_{n + 1}^{2}} + 30 {C_{n + 1}^{3}} + 150 {C_{n + 1}^{4}} + 240 {C_{n + 1}^{5}} + 120 {C_{n + 1}^{6}} = \dfrac{{n^2}{(n + 1) ^ 2}{(2{n^2} + 2n - 1})}{12} i=1ni5=Cn+12+30Cn+13+150Cn+14+240Cn+15+120Cn+16=12n2(n+1)2(2n2+2n1)

欧拉函数相关:
  • 使得 g c d ( n , i ) = d gcd(n, i) = d gcd(n,i)=d i ( i ≤ n ) i (i \leq n) i(in) ϕ ( n / d ) \phi(n / d) ϕ(n/d) 个; (证明暂无)
  • ∑ d ∣ n ϕ ( d ) = n ( d ≤ n ) \sum\limits_{d|n} \phi(d) = n (d \leq n) dnϕ(d)=n(dn)
    \quad n n n 的约数的欧拉函数之和恰为 n n n ;比如 ϕ ( 1 ) + ϕ ( 2 ) + ϕ ( 4 ) + ϕ ( 8 ) = 1 + 1 + 2 + 4 = 8 \phi(1) + \phi(2) + \phi(4) + \phi(8) = 1 + 1 + 2 + 4 = 8 ϕ(1)+ϕ(2)+ϕ(4)+ϕ(8)=1+1+2+4=8
近似公式:
  • lim ⁡ n → ∞ n ! = 2 π n ( n e ) n \lim \limits_{n \to \infty} n! = \sqrt{2 \pi n} {(\dfrac{n}{e})} ^ n nlimn!=2πn (en)n

  • lim ⁡ n → ∞ ( 1 + x n ) n = e x \lim \limits_{n \to \infty} (1 + \dfrac{x}{n}) ^ n = {e^x} nlim(1+nx)n=ex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值