step1:生成无标度网络
N = 1000; m0 = 3;m = 3; %初始结点3,度3 节点数N
adjacent_matrix = sparse(m0,m0);%初始化邻接矩阵
for i = 1:m0
for j = 1:m0
if j~=i%去掉自身形成的环
adjacent_matrix(i,j) = 1;%建立初始临界矩阵
end
end
end
adjacent_matrix = sparse(adjacent_matrix);
node_degree = zeros(1,m0+1);
node_degree(2:m0+1) = sum(adjacent_matrix);
for iter = 4:N
iter
total_degree = 2*m*(iter - 4)+6;
cum_degree = cumsum(node_degree);
choose = zeros(1,m);
%选出第一个和新点相连接的定点
r1 = rand(1)*total_degree; %计算与已存在点相连的概率
for i = 1:iter-1
if(r1>=cum_degree(i))&(r1<cum_degree(i+1))%选取度大的点
choose(1) = i;
break
end
end
%选出第二个和新点相连接的顶点
r2 = rand(1)*total_degree;
for i = 1:iter-1
if(r2>=cum_degree(i))&(r2<cum_degree(i+1))
choose(2) = i;
break
end
end
while choose(2) == choose(1)
r2 = rand(1)*total_degree;
for i = 1:iter-1
if(r2>=cum_degree(i))&(r2<cum_degree(i+1))
choose(2) = i;
break
end
end
end
%选出第三个和新点相连接的顶点
r3 = rand(1)*total_degree;
for i = 1:iter-1
if(r3>=cum_degree(i))&(r3<cum_degree(i+1))
choose(3) = i;
break
end
end
while (choose(3) == choose(1)|choose(3) == choose(2))
r3 = rand(1)*total_degree;
for i = 1:iter-1
if(r3>=cum_degree(i))&(r3<cum_degree(i+1))
choose(3) = i;
break
end
end
end
%把新点加入网络后,对邻接矩阵进行相应的改变!
for k = 1:m
adjacent_matrix(iter,choose(k))=1;
adjacent_matrix(choose(k),iter)=1;
end
node_degree = zeros(1,iter+1);
node_degree(2:iter+1) = sum(adjacent_matrix);
end
save data adjacent_matrix
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
step2:理想模型
%所有人接受消息%最初的模型,概率不变,人群相同
adj =adjacent_matrix;%邻接矩阵
num = size(adj);num = num(1);
N = 17;%循环次数
beta = 0.2; %未知者变为传播者概率
alpha = 0.1;%传播者变为超级传播者
delta = 0.3;%超级传播者接受消息变为免疫者
gamma = 0.3;%传播者变为免疫者
I = zeros(num,1); %未知者 0 传播者 1 超级传播者 2 免疫者 -1
im = zeros(N,1); im(1) = num;
s = zeros(N,1);s(1) = 0;
jm = zeros(N,1);jm(1) = 0;
r = zeros(N,1);r(1) = 0;
%信息发布者为超级传播者
for i = 2:1:N
for j = 1:num
if (rand(1) < beta)&&(I(j) == 0)%未知者变为传播者
I(j) = 1;
end
end
for j =1:num
if (rand(1) < alpha)&&(I(j) == 1)%传播者变为超级传播者
I(j) = 2;
end
end
for j = 1:num
for k = 1:num
if j~=k
if(I(j) == 1)&&((adj(j,k)==1)&&(I(k) ~= 0))&&(rand(1)<gamma)%传播者变为免疫者
I(j) = -1;
end
if(I(j) == 2)&&(((adj(j,k) == 1)&&adj(k) == 1)||(jm(i-1)>0))&&(rand(1)<delta)%超级传播者变为免疫者
I(j) = -1;
end
end
end
end
im(i) = sum(I == 0);s(i) = sum(I == 1);jm(i) = sum(I == 2);r(i) = sum(I == -1);
end
hold on
title('ISJR模型')
xlabel('T')
ylabel('N')
plot(1:N,im,'.-k')
plot(1:N,s,'-k')
plot(1:N,jm,'--k')
plot(1:N,r,':k')
str = {'未知者','传播者','超级传播者','免疫者'};
legend(str,'location','best')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
step3:考虑两消息的相互影响
T = 6;%T时刻新消息发布
newstype = 1;%消息类型,1:互补促进型,0:互不相容型
adj =adjacent_matrix;%邻接矩阵
num = size(adj);num = num(1);
M = 15;%循环次数
beta0 = 0.6;%促进系数 newstype = 0 时有效
Q1 = num*0.8;%抑制临界人数
Q2 = num*0.3;
%原消息
beta = 0.4; %一般者变为传播者概率
alpha = 0.1;%传播者变为超级传播者
delta = 0.3;%超级传播者接受消息变为免疫者
gamma = 0.3;%传播者变为免疫者
%新消息
betan = 0.5; %一般者变为传播者概率
alphan = 0.2;
deltan = 0.3;
gamman = 0.3;
I = zeros(num,1); %未知者 0 传播者 1 超级传播者 2 免疫者 -1
N = zeros(num,1); %新消息
im = zeros(M,1); im(1) = num;s = zeros(M,1);s(1) = 0;
jm = zeros(M,1); jm(1) = 0; r = zeros(M,1);r(1) = 0;
in = zeros(M,1);in(T) = num; sn = zeros(M,1);sn(T) = 0;
jn = zeros(M,1);jn(T) = 0; rn = zeros(M,1);rn(T) = 0;
p = 0.1;%活跃着所占比例;
q = 0.1;%固执者所占比例为(1-q),且p+q<1,即q>p;
S = zeros(num,1);%状态矩阵,0:一般者,1:积极者,-1:固执者,2:其他状态
for i = 1:num
if rand(1)<p
S(i) = 1;
elseif rand(1)>q
S(i) =-1;
end
end%生成原消息状态矩阵
p1 = 0.1;%活跃着所占比例;
q1 = 0.1;%固执者所占比例为(1-q),且p+q<1,即q>p;
S1 = zeros(num,1);%状态矩阵,0:一般者,1:积极者,-1:固执者,2:其他状态
for i = 1:num
if rand(1)<p1
S1(i) = 1;
elseif rand(1)>q1
S1(i) =-1;
end
end%生成状态矩阵
beta1 = beta;
beta2 = betan;
for i = 2:1:M
for j = 1:num
if I(j) ==0;%判断未知者
if S(j)== 1%活跃着一定变为变为传播者
I(j) = 1;
elseif (S(j) ==0)&&(rand(1)<beta)%一般者变为传播者
I(j) = 1;
elseif (S(j)==-1)&&(rand(1)<beta1)
I(j) = 1;
end
end
end
for j =1:num
if (rand(1) < alpha)&&(I(j) == 1)%传播者变为超级传播者
I(j) = 2;
end
end
for j = 1:num
for k = 1:num
if j~=k
if(I(j) == 1)&&((adj(j,k)==1)&&(I(k) ~= 0))&&(rand(1)<gamma)%传播者变为免疫者
I(j) = -1;
end
if(I(j) == 2)&&(((adj(j,k) == 1)&&adj(k) == 1)||(jm(i-1)>0))&&(rand(1)<delta)%超级传播者变为免疫者
I(j) = -1;
end
end
end
end
im(i) = sum(I == 0);s(i) = sum(I == 1);jm(i) = sum(I == 2);r(i) = sum(I == -1);
if i>T %新消息发布
for j = 1:num
if N(j) == 0
if S1(j)== 1%活跃着一定变为变为传播者
N(j) = 1;
elseif (S1(j) ==0)&&(rand(1)<betan)%
N(j) = 1;
elseif (S1(j)==-1)&&(rand(1)<beta2)%
N(j) = 1;
end
end
end
for j =1:num
if (rand(1) < alphan)&&(N(j) == 1)%传播者变为超级传播者
N(j) = 2;
end
end
for j = 1:num
for k = 1:num
if j~=k
if(N(j) == 1)&&((adj(j,k)==1)&&(N(k) ~= 0))&&(rand(1)<gamman)%传播者变为免疫者
N(j) = -1;
end
if(N(j) == 2)&&(((adj(j,k) == 1)&&adj(k) == 1)||(jn(i-1)>0))&&(rand(1)<deltan)%超级传播者变为免疫者
N(j) = -1;
end
end
end
end
in(i) = sum(N == 0);sn(i) = sum(N == 1);jn(i) = sum(N == 2);rn(i) = sum(N == -1);
if newstype == 1%促进型
beta = (num-in(i))/num*beta0+beta;%beta0:促进系数
betan = (num-im(i))/num*beta0+betan;
elseif newstype == 0;%抑制型
beta = in(i)/Q1*beta;
betan = im(i)/Q2*betan;
end
end
beta = (1-i/M)*beta;
betan = (1-i/M)*betan;
beta1 =(num-im(i))/num*beta;
beta2 =(num-im(i))/num*betan;
end
figure
hold on
title('某消息')
xlabel('T')
ylabel('N')
plot(1:M,im,'.-k')
plot(1:M,s,'-k')
plot(1:M,jm,'--k')
plot(1:M,r,':k')
str = {'未知者','传播者','超级传播者','免疫者'};
legend(str,'location','best')
figure
hold on
title('新消息')
xlabel('T')
ylabel('N')
plot(T:M,in(T:end),'.-k')
plot(T:M,sn(T:end),'-k')
plot(T:M,jn(T:end),'--k')
plot(T:M,rn(T:end),':k')
str = {'未知者','传播者','超级传播者','免疫者'};
legend(str,'location','best')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
step4:考虑传播方式差异
T = 6;%T时刻新消息发布
newstype = 1;%消息类型,1:互补促进型,0:互不相容型
adj =adjacent_matrix;%邻接矩阵
num = size(adj);num = num(1);
M = 15;%循环次数
beta0 = 0.6;%促进系数 newstype = 0 时有效
Q1 = num*0.8;%抑制临界人数
Q2 = num*0.3;
%原消息
beta = 0.4; %一般者变为传播者概率
alpha = 0.1;%传播者变为超级传播者
delta = 0.3;%超级传播者接受消息变为免疫者
gamma = 0.3;%传播者变为免疫者
%新消息
betan = 0.5; %一般者变为传播者概率
alphan = 0.2;
deltan = 0.3;
gamman = 0.3;
I = zeros(num,1); %未知者 0 传播者 1 超级传播者 2 免疫者 -1
N = zeros(num,1); %新消息
im = zeros(M,1); im(1) = num;s = zeros(M,1);s(1) = 0;
jm = zeros(M,1); jm(1) = 0; r = zeros(M,1);r(1) = 0;
in = zeros(M,1);in(T) = num; sn = zeros(M,1);sn(T) = 0;
jn = zeros(M,1);jn(T) = 0; rn = zeros(M,1);rn(T) = 0;
p = 0.1;%活跃着所占比例;
q = 0.1;%固执者所占比例为(1-q),且p+q<1,即q>p;
S = zeros(num,1);%状态矩阵,0:一般者,1:积极者,-1:固执者,2:其他状态
for i = 1:num
if rand(1)<p
S(i) = 1;
elseif rand(1)>q
S(i) =-1;
end
end%生成原消息状态矩阵
p1 = 0.1;%活跃着所占比例;
q1 = 0.1;%固执者所占比例为(1-q),且p+q<1,即q>p;
S1 = zeros(num,1);%状态矩阵,0:一般者,1:积极者,-1:固执者,2:其他状态
for i = 1:num
if rand(1)<p1
S1(i) = 1;
elseif rand(1)>q1
S1(i) =-1;
end
end%生成状态矩阵
beta1 = beta;
beta2 = betan;
for i = 2:1:M
for j = 1:num
if I(j) ==0;%判断未知者
if S(j)== 1%活跃着一定变为变为传播者
I(j) = 1;
elseif (S(j) ==0)&&(rand(1)<beta)%一般者变为传播者
I(j) = 1;
elseif (S(j)==-1)&&(rand(1)<beta1)
I(j) = 1;
end
end
end
for j =1:num
if (rand(1) < alpha)&&(I(j) == 1)%传播者变为超级传播者
I(j) = 2;
end
end
for j = 1:num
for k = 1:num
if j~=k
if(I(j) == 1)&&((adj(j,k)==1)&&(I(k) ~= 0))&&(rand(1)<gamma)%传播者变为免疫者
I(j) = -1;
end
if(I(j) == 2)&&(((adj(j,k) == 1)&&adj(k) == 1)||(jm(i-1)>0))&&(rand(1)<delta)%超级传播者变为免疫者
I(j) = -1;
end
end
end
end
im(i) = sum(I == 0);s(i) = sum(I == 1);jm(i) = sum(I == 2);r(i) = sum(I == -1);
if i>T %新消息发布
for j = 1:num
if N(j) == 0
if S1(j)== 1%活跃着一定变为变为传播者
N(j) = 1;
elseif (S1(j) ==0)&&(rand(1)<betan)%
N(j) = 1;
elseif (S1(j)==-1)&&(rand(1)<beta2)%
N(j) = 1;
end
end
end
for j =1:num
if (rand(1) < alphan)&&(N(j) == 1)%传播者变为超级传播者
N(j) = 2;
end
end
for j = 1:num
for k = 1:num
if j~=k
if(N(j) == 1)&&((adj(j,k)==1)&&(N(k) ~= 0))&&(rand(1)<gamman)%传播者变为免疫者
N(j) = -1;
end
if(N(j) == 2)&&(((adj(j,k) == 1)&&adj(k) == 1)||(jn(i-1)>0))&&(rand(1)<deltan)%超级传播者变为免疫者
N(j) = -1;
end
end
end
end
in(i) = sum(N == 0);sn(i) = sum(N == 1);jn(i) = sum(N == 2);rn(i) = sum(N == -1);
if newstype == 1%促进型
beta = (num-in(i))/num*beta0+beta;%beta0:促进系数
betan = (num-im(i))/num*beta0+betan;
elseif newstype == 0;%抑制型
beta = in(i)/Q1*beta;
betan = im(i)/Q2*betan;
end
end
beta = (1-i/M)*beta;
betan = (1-i/M)*betan;
beta1 =(num-im(i))/num*beta;
beta2 =(num-im(i))/num*betan;
end
figure
hold on
title('某消息')
xlabel('T')
ylabel('N')
plot(1:M,im,'.-k')
plot(1:M,s,'-k')
plot(1:M,jm,'--k')
plot(1:M,r,':k')
str = {'未知者','传播者','超级传播者','免疫者'};
legend(str,'location','best')
figure
hold on
title('新消息')
xlabel('T')
ylabel('N')
plot(T:M,in(T:end),'.-k')
plot(T:M,sn(T:end),'-k')
plot(T:M,jn(T:end),'--k')
plot(T:M,rn(T:end),':k')
str = {'未知者','传播者','超级传播者','免疫者'};
legend(str,'location','best')
---------------------
作者:code_kitty
来源:优快云
原文:https://blog.youkuaiyun.com/baidu_39452027/article/details/77606498
版权声明:本文为博主原创文章,转载请附上博文链接!