题目
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
思路
爬 0 层和爬 1 层都只有一种情况, 但是爬两层有两种:一次爬一层一共爬两次、一次爬两层一共爬一次,爬三层有三种:一次爬一层一共爬三次、先爬一层再爬两层一共爬两次、先爬两层再爬一层一共爬两次。所以 f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5。规律是 f(n) = f(n-1) + f(n-2),因为爬到第 n 阶有两种情况,分别是站在第 n-1 阶爬一层和站在第 n-2 阶爬两层,所以就是 f(n-1) 和 f(n-2)的和。
方法一 官方题解的动态规划
时间复杂度O(n),空间复杂度O(1),运行用