吴恩达机器学习笔记 三十七 电影推荐系统 使用特征 成本函数 协同过滤算法

文章探讨了基于电影评分数据的预测模型,使用特征向量和用户参数进行评分预测。通过协同过滤方法结合用户信息,优化成本函数并通过梯度下降学习未知的电影特征向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以电影评分系统为例,令 r(i, j) 来表示用户 j 已经对电影 i 评分, y(i, j)表示评分具体是多少。

假如每部电影有自己的特征,那么用户 j 对电影 i 的评分预测为 w(j) * x(i) + b(j)

r(i, j) :一个用户 j 是否对电影 i 进行了评分, 1 为已评

y(i, j):用户 j 对电影 i 的评分

w(j) b(j):用户 j 的参数

x(i):电影 i 的特征向量

成本函数如下,最后一项是正则化项。其中除以m(j)可以忽略,因为是常数。

 对于所有用户,成本函数只需要把这 nu 个用户的成本函数加起来即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值