import matplotlib.pyplot as plt
import numpy as np
#导入肿瘤数据集
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()
print("=======================数据集信息====================")
print(cancer.keys())
print("肿瘤的分类:",cancer['target_names'])
print("肿瘤的特征:",cancer['feature_names'])
print("=====================高斯朴素贝叶斯建模=====================")
X,y=cancer.data,cancer.target
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=38)
print("训练集数据形态:",X_train.shape)
print("测试集数据形态:",X_test.shape)
from sklearn.naive_bayes import GaussianNB
gnb=GaussianNB()
gnb.fit(X_train,y_train)
print("训练集得分:{:.3f}".format(gnb.score(X_train,y_train)))
print("测试集得分:{:.3f}".format(gnb.score(X_test,y_test)))
print("===================高斯朴素贝叶斯的学习曲线===================")
#导入学习曲线库
from sklearn.model_selection import learning_curve
#导入随机拆分工具
from sklearn.model_selection import ShuffleSplit
#定义函数绘制学习曲线
def plot_learning_curve(esti
朴素贝叶斯实例(肿瘤良性与恶性)【机器学习算法一朴素贝叶斯5】
最新推荐文章于 2024-07-31 23:38:12 发布