Leetcode 1947. 最大兼容性评分和

有一份由 n 个问题组成的调查问卷,每个问题的答案要么是 0(no,否),要么是 1(yes,是)。

这份调查问卷被分发给 m 名学生和 m 名导师,学生和导师的编号都是从 0 到 m - 1 。学生的答案用一个二维整数数组 students 表示,其中 students[i] 是一个整数数组,包含第 i 名学生对调查问卷给出的答案(下标从 0 开始)。导师的答案用一个二维整数数组 mentors 表示,其中 mentors[j] 是一个整数数组,包含第 j 名导师对调查问卷给出的答案(下标从 0 开始)。

每个学生都会被分配给 一名 导师,而每位导师也会分配到 一名 学生。配对的学生与导师之间的兼容性评分等于学生和导师答案相同的次数。

例如,学生答案为[1, 0, 1] 而导师答案为 [0, 0, 1] ,那么他们的兼容性评分为 2 ,因为只有第二个和第三个答案相同。
请你找出最优的学生与导师的配对方案,以 最大程度上 提高 兼容性评分和 。

给你 students 和 mentors ,返回可以得到的 最大兼容性评分和 。

示例 1:

输入:students = [[1,1,0],[1,0,1],[0,0,1]], mentors = [[1,0,0],[0,0,1],[1,1,0]]
输出:8
解释:按下述方式分配学生和导师:
- 学生 0 分配给导师 2 ,兼容性评分为 3 。
- 学生 1 分配给导师 0 ,兼容性评分为 2 。
- 学生 2 分配给导师 1 ,兼容性评分为 3 。
最大兼容性评分和为 3 + 2 + 3 = 8 。
示例 2:

输入:students = [[0,0],[0,0],[0,0]], mentors = [[1,1],[1,1],[1,1]]
输出:0
解释:任意学生与导师配对的兼容性评分都是 0 。
 

提示:

m == students.length == mentors.length
n == students[i].length == mentors[j].length
1 <= m, n <= 8
students[i][k] 为 0 或 1
mentors[j][k] 为 0 或 1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-compatibility-score-sum
 

解法:

本题是一种比较简单的状压dp。可以先预处理出学生和老师之间的兼容性。本题可以对学生人数进行状态压缩也可以对老师人数进行状态压缩。f(i, mask)表示给第i老师分配完,已被分配的学生的数量,则状态转移方程为

f(i, mask)=max(f(i, mask), f(i-1, mask^(1<<j))),其中0<=j<m,j表示第j个学生分配给第i个老师。根据状态转移,可以发现i的状态只与i-1有关,所以可以优化为

f(mask)=max(f(mask), f(mask^(1<<j)).

class Solution {


public:
	int maxCompatibilitySum(vector<vector<int>>& students, vector<vector<int>>& mentors) {
		int m = students.size(), n = students[0].size();
		vector<vector<int>> g(m, vector<int>(m));
		for (int i = 0; i < m; ++i)
		{
			for (int j = 0; j < m; ++j)
			{
				for (int k = 0; k < n; ++k)
					g[i][j] += (students[i][k] == mentors[j][k]);
			}
		}
		int top = 1 << m;
		vector<int> f(top);
		auto getC = [](int x){
			int count = 0;
			while (x)
			{
				++count;
				x = (x - 1)&x;
			}
			return count;
		};

		for (int mask = 1; mask < top; ++mask)
		{
			int c = getC(mask);
			for (int i = 0; i < m; ++i)
			{
				if (mask & 1 << i)
				{
					f[mask] = max(f[mask], f[mask ^ (1 << i)] + g[c - 1][i]);
				}
			}
		}
		return f[top - 1];
	}
};

### 如何在 VSCode 中安装配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值