1.K-means聚类
将iris数据集上演示K-means聚类的过程,首先要从iris数据集中移除Species属性,然后再对数据集iris2调用函数,并将聚类结果储存在变量kmeans.result中。
> attach(iris) > iris2 <- iris > iris2$Species <- NULL
> (kmeans.result <- kmeans(iris, 3)) K-means clustering with 3 clusters of sizes 50, 38, 62 Cluster means: Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.006000 3.428000 1.462000 0.246000 2 6.850000 3.073684 5.742105 2.071053 3 5.901613 2.748387 4.393548 1.433871 Clustering vector: [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [41] 1 1 1 1 1 1 1 1 1 1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 [81] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 3 2 2 2 2 2 2 3 3 2 2 2 2 3 [121] 2 3 2 3 2 2 3 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 Within cluster sum of squares by cluster: [1] 15.15100 23.87947 39.82097 (between_SS / total_SS = 88.4 %) Available components: [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss"