LeetCode刷题笔记 114. 二叉树展开为链表

题目描述

给定一个二叉树,原地将它展开为链表。

Sample Code (后序遍历)

class Solution {
	private TreeNode node;
	public void flatten(TreeNode root) {
		if(root == null) return;
		flatten(root.right);
		flatten(root.left);
		root.right = node;
		root.left = null;
		node = root;	
	}
}

Sample Code (递归)

一开始没想明白遇到root.left为null的情况,遇到root.left = null的情况时while(root.right != null)会自动弥补 root.left = null 的坑。

class Solution {
    public void flatten(TreeNode root) {
        if(root == null) return;
        flatten(root.left);
        flatten(root.right);
        TreeNode temp = root.right;
        root.right = root.left;
        root.left = null;
        while(root.right != null) 
            root = root.right;
        root.right = temp;
    }
}

Sample Code (非递归)

直接把左子树链接到右子树去,然后左子树里面的左子树到后面再以一样的道理处理。

class Solution {
    public void flatten(TreeNode root) {
        while(root != null) {
            if(root.left == null) {
                root = root.right;
            }else {
                TreeNode tmp = root.left;
                while(tmp.right != null)
                    tmp = tmp.right;
                tmp.right = root.right;
                
                root.right = root.left;
                root.left = null;                
                
                root = root.right;
            }
        }        
    }
}
训练数据保存为deep_convnet_params.pkl,UI使用wxPython编写。卷积神经网络(CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,在计算机视觉、语音识别、自然语言处理等多个领域有广泛应用。其核心设计理念源于对生物视觉系统的模拟,主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。 **1. 局部感知与卷积操作** 卷积层是CNN的基本构建块,使用一组可学习的滤波器对输入图像进行扫描。每个滤波器在图像上滑动,以局部区域内的像素值与滤波器权重进行逐元素乘法后求和,生成输出值。这一过程能够捕获图像中的边缘、纹理等局部特征。 **2. 权重共享** 同一滤波器在整个输入图像上保持相同的权重。这显著减少了模型参数数量,增强了泛化能力,并体现了对图像平移不变性的内在假设。 **3. 池化操作** 池化层通常紧随卷积层之后,用于降低数据维度并引入空间不变性。常见方法有最大池化和平均池化,它们可以减少模型对微小位置变化的敏感度,同时保留重要特征。 **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起。随着网络深度增加,每一层逐渐提取更复杂、更抽象的特征,从底层识别边缘、角点,到高层识别整个对象或场景,使得CNN能够从原始像素数据中自动学习到丰富的表示。 **5. 激活函数与正则化** CNN中使用非线性激活函数来引入非线性表达能力。为防止过拟合,常采用正则化技术,如L2正则化和Dropout,以增强模型的泛化性能。 **6. 应用场景** CNN在诸多领域展现出强大应用价值,包括图像分类、目标检测、语义分割、人脸识别、图像生成、医学影像分析以及自然语言处理等任务。 **7. 发展与演变** CNN的概念起源于20世纪80年代,其影响力在硬件加速和大规模数据集出现后真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构推动了CNN技术的快速发展。如今,CNN已成为深度学习图像处理领域的基石,并持续创新。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值