Codeforces 195E Building Forest

本文详细介绍了如何使用带权并查集解决一个特定的图论问题,包括输入解析、操作实现以及输出计算过程。通过实例演示,深入浅出地解释了如何在给定操作序列下构建加权有向森林,并计算最终图的所有边权重之和。重点突出了算法的步骤和背后的逻辑思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An oriented weighted forest is an acyclic weighted digraph in which from each vertex at most one edge goes.

The root of vertex v of an oriented weighted forest is a vertex from which no edge goes and which can be reached from vertex v moving along the edges of the weighted oriented forest. We denote the root of vertex v as root(v).

The depth of vertex v is the sum of weights of paths passing from the vertex v to its root. Let’s denote the depth of the vertex v as depth(v).

Let’s consider the process of constructing a weighted directed forest. Initially, the forest does not contain vertices. Vertices are added sequentially one by one. Overall, there are n performed operations of adding. The i-th (i > 0) adding operation is described by a set of numbers (k,  v1,  x1,  v2,  x2,  … ,  vk,  xk) and means that we should add vertex number i and k edges to the graph: an edge from vertex root(v1) to vertex i with weight depth(v1) + x1, an edge from vertex root(v2) to vertex i with weight depth(v2) + x2 and so on. If k = 0, then only vertex i is added to the graph, there are no added edges.

Your task is like this: given the operations of adding vertices, calculate the sum of the weights of all edges of the forest, resulting after the application of all defined operations, modulo 1000000007 (109 + 7).

Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of operations of adding a vertex.

Next n lines contain descriptions of the operations, the i-th line contains the description of the operation of adding the i-th vertex in the following format: the first number of a line is an integer k (0 ≤ k ≤ i - 1), then follow 2k space-separated integers: v1, x1, v2, x2, … , vk, xk (1 ≤ vj ≤ i - 1, |xj| ≤ 109).

The operations are given in the order, in which they should be applied to the graph. It is guaranteed that sum k of all operations does not exceed 105, also that applying operations of adding vertexes does not result in loops and multiple edges.

Output
Print a single number — the sum of weights of all edges of the resulting graph modulo 1000000007 (109 + 7).

Sample test(s)
input
6
0
0
1 2 1
2 1 5 2 2
1 1 2
1 3 4
output
30
input
5
0
1 1 5
0
0
2 3 1 4 3
output
9
Note
Conside the first sample:

Vertex 1 is added. k = 0, thus no edges are added.
Vertex 2 is added. k = 0, thus no edges are added.
Vertex 3 is added. k = 1. v1 = 2, x1 = 1. Edge from vertex root(2) = 2 to vertex 3 with weight depth(2) + x1 = 0 + 1 = 1 is added.
Vertex 4 is added. k = 2. v1 = 1, x1 = 5. Edge from vertex root(1) = 1 to vertex 4 with weight depth(1) + x1 = 0 + 5 = 5 is added. v2 = 2, x2 = 2. Edge from vertex root(2) = 3 to vertex 4 with weight depth(2) + x1 = 1 + 2 = 3 is added.
Vertex 5 is added. k = 1. v1 = 1, x1 = 2. Edge from vertex root(1) = 4 to vertex 5 with weight depth(1) + x1 = 5 + 2 = 7 is added.
Vertex 6 is added. k = 1. v1 = 3, x1 = 4. Edge from vertex root(3) = 5 to vertex 6 with weight depth(3) + x1 = 10 + 4 = 14 is added.
The resulting graph is shown on the pictore below:

解题思路:看了那么多遍还不如看样例图,从样例图中,我们可以发现其实这就是一个简单的带权并查集,注意输出要为[0,mod)之间的一个整数。

#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
const int mod = 1000000000 + 7;
const int maxn = 100010;
int p[maxn], d[maxn];
int n, m;

void init_set() {
    for(int i = 0; i <= n; ++i) {
        p[i] = i;
        d[i] = 0;
    }
}

int find_set(int u) {
    if(p[u] == u) return u;
    int f = p[u];
    p[u] = find_set(p[u]);
    d[u] = (d[f] + d[u]) % mod;
    return p[u];
}

void union_set(int u, int v, int w) {
    p[v] = u;
    d[v] = w % mod;
    return ;
}

int main() {

    //freopen("aa.in", "r", stdin);
    int ans = 0;
    int v, x;
    scanf("%d", &n);
    init_set();
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &m);
        for(int j = 1; j <= m; ++j) {
            scanf("%d %d", &v, &x);
            int r = find_set(v);
            ans = (ans + (d[v] + x)%mod) % mod;
            union_set(i, r, d[v] + x);
        }
    }
    printf("%d\n", (ans+mod)%mod);
    return 0;
}
基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值