Codeforces 195E Building Forest

本文详细介绍了如何使用带权并查集解决一个特定的图论问题,包括输入解析、操作实现以及输出计算过程。通过实例演示,深入浅出地解释了如何在给定操作序列下构建加权有向森林,并计算最终图的所有边权重之和。重点突出了算法的步骤和背后的逻辑思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An oriented weighted forest is an acyclic weighted digraph in which from each vertex at most one edge goes.

The root of vertex v of an oriented weighted forest is a vertex from which no edge goes and which can be reached from vertex v moving along the edges of the weighted oriented forest. We denote the root of vertex v as root(v).

The depth of vertex v is the sum of weights of paths passing from the vertex v to its root. Let’s denote the depth of the vertex v as depth(v).

Let’s consider the process of constructing a weighted directed forest. Initially, the forest does not contain vertices. Vertices are added sequentially one by one. Overall, there are n performed operations of adding. The i-th (i > 0) adding operation is described by a set of numbers (k,  v1,  x1,  v2,  x2,  … ,  vk,  xk) and means that we should add vertex number i and k edges to the graph: an edge from vertex root(v1) to vertex i with weight depth(v1) + x1, an edge from vertex root(v2) to vertex i with weight depth(v2) + x2 and so on. If k = 0, then only vertex i is added to the graph, there are no added edges.

Your task is like this: given the operations of adding vertices, calculate the sum of the weights of all edges of the forest, resulting after the application of all defined operations, modulo 1000000007 (109 + 7).

Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of operations of adding a vertex.

Next n lines contain descriptions of the operations, the i-th line contains the description of the operation of adding the i-th vertex in the following format: the first number of a line is an integer k (0 ≤ k ≤ i - 1), then follow 2k space-separated integers: v1, x1, v2, x2, … , vk, xk (1 ≤ vj ≤ i - 1, |xj| ≤ 109).

The operations are given in the order, in which they should be applied to the graph. It is guaranteed that sum k of all operations does not exceed 105, also that applying operations of adding vertexes does not result in loops and multiple edges.

Output
Print a single number — the sum of weights of all edges of the resulting graph modulo 1000000007 (109 + 7).

Sample test(s)
input
6
0
0
1 2 1
2 1 5 2 2
1 1 2
1 3 4
output
30
input
5
0
1 1 5
0
0
2 3 1 4 3
output
9
Note
Conside the first sample:

Vertex 1 is added. k = 0, thus no edges are added.
Vertex 2 is added. k = 0, thus no edges are added.
Vertex 3 is added. k = 1. v1 = 2, x1 = 1. Edge from vertex root(2) = 2 to vertex 3 with weight depth(2) + x1 = 0 + 1 = 1 is added.
Vertex 4 is added. k = 2. v1 = 1, x1 = 5. Edge from vertex root(1) = 1 to vertex 4 with weight depth(1) + x1 = 0 + 5 = 5 is added. v2 = 2, x2 = 2. Edge from vertex root(2) = 3 to vertex 4 with weight depth(2) + x1 = 1 + 2 = 3 is added.
Vertex 5 is added. k = 1. v1 = 1, x1 = 2. Edge from vertex root(1) = 4 to vertex 5 with weight depth(1) + x1 = 5 + 2 = 7 is added.
Vertex 6 is added. k = 1. v1 = 3, x1 = 4. Edge from vertex root(3) = 5 to vertex 6 with weight depth(3) + x1 = 10 + 4 = 14 is added.
The resulting graph is shown on the pictore below:

解题思路:看了那么多遍还不如看样例图,从样例图中,我们可以发现其实这就是一个简单的带权并查集,注意输出要为[0,mod)之间的一个整数。

#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
const int mod = 1000000000 + 7;
const int maxn = 100010;
int p[maxn], d[maxn];
int n, m;

void init_set() {
    for(int i = 0; i <= n; ++i) {
        p[i] = i;
        d[i] = 0;
    }
}

int find_set(int u) {
    if(p[u] == u) return u;
    int f = p[u];
    p[u] = find_set(p[u]);
    d[u] = (d[f] + d[u]) % mod;
    return p[u];
}

void union_set(int u, int v, int w) {
    p[v] = u;
    d[v] = w % mod;
    return ;
}

int main() {

    //freopen("aa.in", "r", stdin);
    int ans = 0;
    int v, x;
    scanf("%d", &n);
    init_set();
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &m);
        for(int j = 1; j <= m; ++j) {
            scanf("%d %d", &v, &x);
            int r = find_set(v);
            ans = (ans + (d[v] + x)%mod) % mod;
            union_set(i, r, d[v] + x);
        }
    }
    printf("%d\n", (ans+mod)%mod);
    return 0;
}
内容概要:本文介绍了MATLAB实现DBN-RBF深度置信网络结合RBF神经网络多输入单输出回归预测的详细项目实例。项目旨在通过深度置信网络(DBN)和径向基函数神经网络(RBF)的结合,设计出一种高效的回归预测模型,以应对高维数据和非线性关系的挑战。DBN用于无监督特征提取,RBF用于快速回归,两者结合显著提升了预测精度和模型泛化能力。文中详细描述了项目的背景、目标、挑战、解决方案、模型架构、代码实现、GUI设计、性能评估及未来改进方向。 适合人群:具备一定编程基础,对机器学习和深度学习有一定了解的研发人员,尤其是从事金融预测、医疗健康、智能制造等领域的工程师和技术人员。 使用场景及目标:①解决高维数据的特征提取难题,提升非线性回归的拟合精度;②通过无监督学习与快速训练能力的结合,提高模型的预测精度和泛化能力;③应用于金融预测、医疗健康、智能制造等多个领域,提供高效的回归预测工具;④通过实时数据流处理和GPU加速推理,确保系统在实时应用中的快速响应。 其他说明:此项目不仅提供了详细的理论分析和代码实现,还涵盖了系统架构设计、模型部署与应用、安全性与用户隐私保护等方面的全面指导。通过结合其他深度学习模型、多任务学习、增量学习等技术,项目具备广阔的扩展性和应用前景。系统还支持自动化CI/CD管道、API服务与业务集成、前端展示与结果导出等功能,确保了系统的高可用性和易用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值