Tensorflow 2.0 基础API

1.导入
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
import os
import sklearn
import sys
import time
import tensorflow as tf

from tensorflow import keras

print(tf.__version__)
print(sys.version_info)
for module in mpl,np,pd,sklearn,tf,keras:
    print(module.__name__, module.__version__)
  1. @tf.constant

     t = tf.constant([[1.,2.,3.],[4.,5.,6.]])
     # index
     print(t)
     print(t[:,1:])
     print(t[..., 1])
     print(t+10)
     print(tf.square(t))
     print(t @ tf.transpose(t))
     
     # numpy conversion
     print(t.numpy())
     print(np.square(t))
     np_t = np.array([[1.,2.,3.],[4.,5.,6.]])
     print(tf.constant(np_t))
     
     # Scalars 0维
     t = tf.constant(2.781)
     print(t.numpy())
     print(t.shape)
     
     # string
     t = tf.constant("cafe")
     print(t)
     print(tf.strings.length(t))
     print(tf.strings.length(t,unit="UTF8_CHAR"))
     print(tf.strings.unicode_decode(t,"UTF-8"))
     
     # string array
     t = tf.constant(["cafe","coffee","咖啡"])
     print(tf.strings.length(t,unit = "UTF8_CHAR"))
     r = tf.strings.unicode_decode(t,"UTF-8")
     print(r) 
     
     # RaggedTensor是不完整的n维矩阵
     # ragged tensor
     r = tf.ragged.constant([[11,12],[21,22,32],[],[41]])
     #op
     print(r)
     print(r[1])
     print(r[1:2])
     
     r2 = tf.ragged.constant([[51,52],[],[71]])
     print(tf.concat([r,r2],axis = 0))
     
     r3 = tf.ragged.constant([[13,14],[21,32,43],[],[33]])
     print(tf.concat([r,r3],axis = 1))
     
     
     #raged tensor->tensor
     # 0在正向值后边
     print(r.to_tensor())  
     
     # sparse tensor  :indices必须排好序,否则调用不了to_dense
     # 0随意位置(稀疏矩阵)
     s = tf.SparseTensor(indices = [[0,1],[1,0],[2,3]],
                        values = [1.,2.,3.],
                        dense_shape=[3,4])
     print(s)
     print(tf.sparse.to_dense(s))
     
     
     
     s2 = s*2.0
     print(s2)
     
     try:
         s3 = s+1
     except TypeError as ex:
         print(ex)
         
     s4 = tf.constant([[10.,20,],
                      [30.,40],
                      [50.,60],
                      [70.,80]])
     print(tf.sparse.sparse_dense_matmul(s,s4))
     
     # sparse tensor
     # 不排序
     s5 = tf.SparseTensor(indices = [[0,2],[0,1],[2,3]],
                        values = [1.,2.,3.],
                        dense_shape=[3,4])
     print(s5)
     s6 = tf.sparse.reorder(s5)
     print(tf.sparse.to_dense(s6))
     
     
     
     # Variables
     v = tf.Variable([[1.,2.,3.],[4.,5.,6.]])
     print(v)
     print(v.value())
     print(v.numpy())
     
     
     # assign value   可对变量重新赋值
     v.assign(2*v)
     print(v.numpy())
     v[0,1].assign(42)
     print(v.numpy())
     v[1]..assign([7.,8.,9.])
     print(v.numpy())
     
     try:
         v[1]=[7.,8.,9.]
     except TypeError as ex:
         print(ex)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值