1.导入
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
import os
import sklearn
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl,np,pd,sklearn,tf,keras:
print(module.__name__, module.__version__)
-
@tf.constant
t = tf.constant([[1.,2.,3.],[4.,5.,6.]]) # index print(t) print(t[:,1:]) print(t[..., 1]) print(t+10) print(tf.square(t)) print(t @ tf.transpose(t)) # numpy conversion print(t.numpy()) print(np.square(t)) np_t = np.array([[1.,2.,3.],[4.,5.,6.]]) print(tf.constant(np_t)) # Scalars 0维 t = tf.constant(2.781) print(t.numpy()) print(t.shape) # string t = tf.constant("cafe") print(t) print(tf.strings.length(t)) print(tf.strings.length(t,unit="UTF8_CHAR")) print(tf.strings.unicode_decode(t,"UTF-8")) # string array t = tf.constant(["cafe","coffee","咖啡"]) print(tf.strings.length(t,unit = "UTF8_CHAR")) r = tf.strings.unicode_decode(t,"UTF-8") print(r) # RaggedTensor是不完整的n维矩阵 # ragged tensor r = tf.ragged.constant([[11,12],[21,22,32],[],[41]]) #op print(r) print(r[1]) print(r[1:2]) r2 = tf.ragged.constant([[51,52],[],[71]]) print(tf.concat([r,r2],axis = 0)) r3 = tf.ragged.constant([[13,14],[21,32,43],[],[33]]) print(tf.concat([r,r3],axis = 1)) #raged tensor->tensor # 0在正向值后边 print(r.to_tensor()) # sparse tensor :indices必须排好序,否则调用不了to_dense # 0随意位置(稀疏矩阵) s = tf.SparseTensor(indices = [[0,1],[1,0],[2,3]], values = [1.,2.,3.], dense_shape=[3,4]) print(s) print(tf.sparse.to_dense(s)) s2 = s*2.0 print(s2) try: s3 = s+1 except TypeError as ex: print(ex) s4 = tf.constant([[10.,20,], [30.,40], [50.,60], [70.,80]]) print(tf.sparse.sparse_dense_matmul(s,s4)) # sparse tensor # 不排序 s5 = tf.SparseTensor(indices = [[0,2],[0,1],[2,3]], values = [1.,2.,3.], dense_shape=[3,4]) print(s5) s6 = tf.sparse.reorder(s5) print(tf.sparse.to_dense(s6)) # Variables v = tf.Variable([[1.,2.,3.],[4.,5.,6.]]) print(v) print(v.value()) print(v.numpy()) # assign value 可对变量重新赋值 v.assign(2*v) print(v.numpy()) v[0,1].assign(42) print(v.numpy()) v[1]..assign([7.,8.,9.]) print(v.numpy()) try: v[1]=[7.,8.,9.] except TypeError as ex: print(ex)