这是习题和答案的下载地址,全网最便宜,只要一积分哦~~~
https://download.youkuaiyun.com/download/wukongakk/10602657
0.综述
异常检测算法用于检测异常数据,通常在异常数据的数量远小于正常数据的数量时使用异常检测算法,在两者数量相差不大的时候,我们通常会选择逻辑回归或神经网络等算法。
1.Load Example Dataset
%% ================== Part 1: Load Example Dataset ===================
% We start this exercise by using a small dataset that is easy to
% visualize.
%
% Our example case consists of 2 network server statistics across
% several machines: the latency and throughput of each machine.
% This exercise will help us find possibly faulty (or very fast) machines.
%
fprintf('Visualizing example dataset for outlier detection.\n\n');
% The following command loads the dataset. You should now have the
% variables X, Xval, yval in your environment
load('ex8data1.mat');
% Visualize the example dataset
plot(X(:, 1), X(:, 2), 'bx');
axis([0 30 0 30]);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');
fprintf('Program paused. Press enter to continue.\n');
pause
2.Estimate the dataset statistics
这个部分是用来确定各个特征的高斯分布。
%% ================== Part 2: Estimate the dataset statistics ===================
% For this exercise, we assume a Gaussian distribution for the dataset.
%
% We first estimate the parameters of our assumed Gaussian distribution,
% then compute the probabilities for each of the points and then visualize
% both the overall distribution and where each of the points falls in
% terms of that distribution.
%
fprintf('Visualizing Gaussian fit.\n\n');
% Estimate my and sigma2
[mu sigma2] = estimateGaussian(X);
% Returns the density of the multivariate normal at each data point (row)
% of X
p = multivariateGaussian(X, mu, sigma2);
% Visualize the fit
visualizeFit(X, mu, sigma2);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');
fprintf('Program paused. Press enter to continue.\n');
pause;
函数[mu sigma2] = estimateGaussian(X),返回特征的均值,方差的平方
function [mu sigma2] = estimateGaussian(X)
%ESTIMATEGAUSSIAN This function estimates the parameters of a
%Gaussian distribution using the data in X
% [mu sigma2] = estimateGaussian(X),
% The input X is the dataset with each n-dimensional data point in one row
% The output is an n-dimensional vector mu, the mean of the data set
% and the variances sigma^2, an n x 1 vector
%
% Useful variables
[m, n] = size(X);
% You should return these values correctly
mu = zeros(n, 1);
sigma2 = zeros(n, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the mean of the data and the variances
% In particular, mu(i) should contain the mean of
% the data for the i-th feature and sigma2(i)
% should contain variance of the i-th feature.
%
mu = mean(X);
sigma2 = 1 / m * sum ( bsxfun(@minus, X, mu) .^2 );
% =============================================================
end
函数p = multivariateGaussian(X, mu, sigma2); 用多元高斯分布计算概率
function p = multivariateGaussian(X, mu, Sigma2)
%MULTIVARIATEGAUSSIAN Computes the probability density function of the
%multivariate gaussian distribution.
% p = MULTIVARIATEGAUSSIAN(X, mu, Sigma2) Computes the probability
% density function of the examples X under the multivariate gaussian
% distribution with parameters mu and Sigma2. If Sigma2 is a matrix, it is
% treated as the covariance matrix. If Sigma2 is a vector, it is treated
% as the \sigma^2 values of the variances in each dimension (a diagonal
% covariance matrix)
%
k = length(mu);
% 如果Sigma2是向量,就把Sigma2转变为对角矩阵
if (size(Sigma2, 2) == 1) || (size(Sigma2, 1) == 1)
Sigma2 = diag(Sigma2);
end
X = bsxfun(@minus, X, mu(:)');
p = ((2 * pi) ^ (- k / 2)) * (det(Sigma2)^(-0.5)) * exp(-0.5 * sum(bsxfun(@times, X * pinv(Sigma2), X), 2));
end
函数 visualizeFit(X, mu, sigma2);用于画出概率分布
function visualizeFit(X, mu, sigma2)
%VISUALIZEFIT Visualize the dataset and its estimated distribution.
% VISUALIZEFIT(X, p, mu, sigma2) This visualization shows you the
% probability density function of the Gaussian distribution. Each example
% has a location (x1, x2) that depends on its feature values.
%
[X1,X2] = meshgrid(0:.5:35);
Z = multivariateGaussian([X1(:) X2(:)],mu,sigma2);
Z = reshape(Z,size(X1));
plot(X(:, 1), X(:, 2),'bx');
hold on;
% Do not plot if there are infinities
if (sum(isinf(Z)) == 0)
contour(X1, X2, Z, 10.^(-20:3:0)');
end
hold off;
end
3.Find Outliers
%% ================== Part 3: Find Outliers ===================
% Now you will find a good epsilon threshold using a cross-validation set
% probabilities given the estimated Gaussian distribution
%
pval = multivariateGaussian(Xval, mu, sigma2);
[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %e\n', epsilon);
fprintf('Best F1 on Cross Validation Set: %f\n', F1);
fprintf(' (you should see a value epsilon of about 8.99e-05)\n\n');
% Find the outliers in the training set and plot the
outliers = find(p < epsilon);
% Draw a red circle around those outliers
hold on
plot(X(outliers, 1), X(outliers, 2), 'ro', 'LineWidth', 2, 'MarkerSize', 10);
hold off
fprintf('Program paused. Press enter to continue.\n');
pause;
函数[epsilon F1] = selectThreshold(yval, pval); 选择阀值
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
%outliers
% [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
% threshold to use for selecting outliers based on the results from a
% validation set (pval) and the ground truth (yval).
%
bestEpsilon = 0;
bestF1 = 0;
F1 = 0;
stepsize = (max(pval) - min(pval)) / 1000;
% 设置步长
for epsilon = min(pval):stepsize:max(pval)
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the F1 score of choosing epsilon as the
% threshold and place the value in F1. The code at the
% end of the loop will compare the F1 score for this
% choice of epsilon and set it to be the best epsilon if
% it is better than the current choice of epsilon.
%
% Note: You can use predictions = (pval < epsilon) to get a binary vector
% of 0's and 1's of the outlier predictions
predictions = (pval < epsilon);
fp = sum((predictions == 1) & (yval == 0));
fn = sum((predictions == 0) & (yval == 1));
tp = sum((predictions == 1) & (yval == 1));
prec = tp / (tp + fp);
rec = tp / (tp + fn);
% 计算召回率和精准率
F1 = 2 * prec * rec / (prec + rec);
% =============================================================
if F1 > bestF1
bestF1 = F1;
bestEpsilon = epsilon;
end
end
end
4. Multidimensional Outliers
%% ================== Part 4: Multidimensional Outliers ===================
% We will now use the code from the previous part and apply it to a
% harder problem in which more features describe each datapoint and only
% some features indicate whether a point is an outlier.
%
% Loads the second dataset. You should now have the
% variables X, Xval, yval in your environment
load('ex8data2.mat');
% Apply the same steps to the larger dataset
[mu sigma2] = estimateGaussian(X);
% Training set
p = multivariateGaussian(X, mu, sigma2);
% Cross-validation set
pval = multivariateGaussian(Xval, mu, sigma2);
% Find the best threshold
[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %e\n', epsilon);
fprintf('Best F1 on Cross Validation Set: %f\n', F1);
fprintf('# Outliers found: %d\n', sum(p < epsilon));
fprintf(' (you should see a value epsilon of about 1.38e-18)\n\n');
pause