Machine Learning

[url]https://www.ibm.com/developerworks/java/library/j-mahout/index.html[/url][quote]Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous experiences. The field is closely related to data mining and often uses techniques from statistics, probability theory, pattern recognition, and a host of other areas.
Supervised learning is tasked with learning a function from labeled training data in order to predict the value of any valid input. Common examples of supervised learning include classifying e-mail messages as spam, labeling Web pages according to their genre, and recognizing handwriting. Many algorithms are used to create supervised learners, the most common being neural networks, Support Vector Machines (SVMs), and Naive Bayes classifiers.
Unsupervised learning, as you might guess, is tasked with making sense of data without any examples of what is correct or incorrect. It is most commonly used for clustering similar input into logical groups. It also can be used to reduce the number of dimensions in a data set in order to focus on only the most useful attributes, or to detect trends. Common approaches to unsupervised learning include k-Means, hierarchical clustering, and self-organizing maps.[/quote]

ppt:
[url]http://www.slideshare.net/Cataldo/tutoria-mahout-recommendation[/url]
[url]http://www.slideshare.net/JeanPierreKnig/what-are-product-recommendations-and-how-do-they-work[/url]
[url]http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818[/url]
text:
[url]http://www.bidn.com/blogs/cprice1979/ssas/4388/-mahout-recommendation-engines-part-2-ride-the-elephant[/url]


[b]Algorithms:[/b]
[url]https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms[/url]
[url]http://answers.google.com/answers/main?cmd=threadview&id=225316[/url]
LSH (Locality-sensitive hashing)
SimHash http://my.oschina.net/pathenon/blog/63747
MinHash http://my.oschina.net/pathenon/blog/65210
TF-IDF & VSM http://pyevolve.sourceforge.net/wordpress/?p=2497


Clustering - unsupervised learning - 不知道什么结果
Classification - supervised learning - 有已知的固定结果集


[b]Machine Learning Terms:[/b]
Association Rules - 关联规则,一个消费者购买了产品A,那么他有多大机会购买产品B?
latent semantic analysis - LSA
probabilistic latent semantic analysis - pLSA
Latent Dirichlet Allocation - LDA [url]http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/[/url]


[b]Math Terms:[/b]
Derivative - 导数
covariance - 协方差 常缩写为 cov
standard deviation - 标准差 常缩写为 stddev
dot product - 数量积(也称为内积、标量积、点积、点乘)


[b]Math symbols:[/b]
[url]http://en.wikipedia.org/wiki/List_of_mathematical_symbols[/url]
[url]http://zh.wikipedia.org/wiki/%E7%94%A8%E6%96%BC%E6%95%B8%E5%AD%B8%E3%80%81%E7%A7%91%E5%AD%B8%E5%92%8C%E5%B7%A5%E7%A8%8B%E7%9A%84%E5%B8%8C%E8%87%98%E5%AD%97%E6%AF%8D[/url]


[b]Text processing:[/b]
Feature Selection,Feature Extraction, Terminology Extraction,Keyword Extraction, 有什么不同?
这里介绍了 Feature Extraction 和 Feature Selection 的区别:
[url]http://stackoverflow.com/questions/2163330/difference-between-feature-selection-feature-extraction-feature-weights[/url]
至于 Feature Extraction / Terminology Extraction / Keyword Extraction 这三个词在含义上有没有什么本质的区别,我tm也不知道,只知道 wikipedia 上FE和TE两个条目是独立的。
Collocation - 搭配词
n-gram - a contiguous sequence of n items from a given sequence of text.
Stemming - process for reducing inflected (or sometimes derived) words to their stem, base or root form—generally a written word form. 即 cats catty ... 都统一为 cat。


[b]Evaluation of recommendation:[/b]
有 preferences 存在的,可以使用 rms root mean squared 等来做;
对于 没有 preferences 的 boolean 推荐,怎么评估那?理论上可以用 classic Information Retrieval metrics:Precision & Recall 来做;但是要注意,基于 Precision & Recall 来做对推荐结果的评估并不是理想的方案。见 Sean:
[url]http://lucene.472066.n3.nabble.com/Evaluating-Boolean-Preferences-for-Item-Recommenders-td688560.html[/url][quote]I am not surprised by low precision. It doesn't necessarily mean the recommender is bad (though it could!). I think a precision-recall test is somewhat flawed for recommenders. It measures how well the recommender returns things the user has already seen, which are not necessarily the best recommendations. That is, a recommender gets penalized in this test if it recommends something the user *would* like, but hasn't rated. [/quote][url]http://stackoverflow.com/questions/7529333/similarity-function-for-mahout-boolean-user-based-recommender[/url]
关于 mahout 实现的 IR metrics 中的 Precision / Recall / Fall-out / nDCG 等:
[url]http://en.wikipedia.org/wiki/Information_retrieval[/url]
[url]http://stackoverflow.com/questions/16478192/how-to-interpret-irstatisticsimpl-data-in-mahout[/url]
CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值