来自:算法基础课
文章目录
第三讲 搜索与图论
树与图的存储
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。
(1) 邻接矩阵:g[a][b] 存储边a->b
(2) 邻接表:
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);
3.1DFS
树与图的遍历
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心
int dfs(int u)
{
st[u] = true; // st[u] 表示点u已经被遍历过
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j]) dfs(j);
}
}
(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
3.1.1 842. 排列数字
给定一个整数 n,将数字 1∼n 排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式
共一行,包含一个整数 n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
#include<bits/stdc++.h>
using namespace std;
const int N=100;
int n;
int a[N],st[N];
void dfs(int idx)
{
if(idx>n)
{
for(int i=1;i<=n;i++)
{
cout<<a[i]<<" ";
}
cout<<endl;
return;
}
for(int i=1;i<=n;i++)
{
if(st[i]==false)
{
a[idx]=i;
st[i]=true;
dfs(idx+1);
st[i]=false;
}
}
}
int main()
{
cin>>n;
dfs(1);
return 0;
}
3.1.1 843. n-皇后问题
n− 皇后问题是指将 n 个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数 n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数 n。
输出格式
每个解决方案占 n 行,每行输出一个长度为 n 的字符串,用来表示完整的棋盘状态。
其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
输出方案的顺序任意,只要不重复且没有遗漏即可。
数据范围
1≤n≤9
输入样例:
4
输出样例:
.Q…
…Q
Q…
…Q.
…Q.
Q…
…Q
.Q…
#include<bits/stdc++.h>
using namespace std;
const int N=15;
int n;
char g[N][N];
bool dg[2*N],udg[2*N];
bool judge(int x,int y)
{
for(int i=1;i<=n;i++)
{
if(g[x][i]=='Q'||g[i][y]=='Q') return false;
}
if(dg[x+y]||udg[n-x+y]) return false;
return true;
}
void dfs(int u)
{
if(u>n)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cout<<g[i][j];
if(j==n) cout<<endl;
}
}
cout<<endl;
return;
}
for(int i=1;i<=n;i++)
{
if(judge(u,i))
{
g[u][i]='Q';
dg[u+i]=udg[n-u+i]=true;
dfs(u+1);
g[u][i]='.';
dg[u+i]=udg[n-u+i]=false;
}
}
}
int main()
{
cin>>n;
fill(g[0],g[0]+N*N,'.');
dfs(1);
return 0;
}
3.2BFS
(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
3.2.1 844. 走迷宫
给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m) 处,至少需要移动多少次。
数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤100
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
#include<bits/stdc++.h>
using namespace std;
const int N=110;
struct Node{
int x,y,layer;
}node;
int n,m;
int g[N][N];
bool inq[N][N];
int X[4]={0,0,1,-1},Y[4]={1,-1,0,0};
int edx,edy;
bool judge(int x,int y)
{
if(x<1||x>n||y<1||y>m) return false;
if(inq[x][y]) return false;
return true;
}
int bfs(int x,int y)
{
node.x=x,node.y=y,node.layer=0;
queue<Node> q;
q.push(node);
inq[x][y]=true;
while(!q.empty())
{
Node top=q.front();
q.pop();
for(int i=0;i<4;i++)
{
node.x=top.x+X[i],node.y=top.y+Y[i],node.layer=top.layer+1;
if(judge(node.x,node.y)&&!g[node.x][node.y])
{
q.push(node);
inq[node.x][node.y]=true;
if(node.x==edx&&node.y==edy) return node.layer;
}
}
}
}
int main()
{
cin>>n>>m;
edx=n,edy=m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>g[i][j];
}
}
cout<<bfs(1,1);
return 0;
}
3.2.2 845. 八数码
在一个 3×3 的网格中,1∼8 这 8 个数字和一个 x 恰好不重不漏地分布在这 3×3 的网格中。
例如:
1 2 3
x 4 6
7 5 8
在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。
我们的目的是通过交换,使得网格变为如下排列(称为正确排列):
1 2 3
4 5 6
7 8 x
例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。
交换过程如下:
1 2 3 1 2 3 1 2 3 1 2 3
x 4 6 4 x 6 4 5 6 4 5 6
7 5 8 7 5 8 7 x 8 7 8 x
现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。
输入格式
输入占一行,将 3×3 的初始网格描绘出来。
例如,如果初始网格如下所示:
1 2 3
x 4 6
7 5 8
则输入为:1 2 3 x 4 6 7 5 8
输出格式
输出占一行,包含一个整数,表示最少交换次数。
如果不存在解决方案,则输出 −1。
输入样例:
2 3 4 1 5 x 7 6 8
输出样例
19
#include<bits/stdc++.h>
using namespace std;
int stx,sty;
int X[4]={0,0,-1,1},Y[4]={1,-1,0,0};
int bfs(string start)
{
string ed="12345678x";
queue<string> q;
unordered_map<string,int> d;
d[start]=0;
q.push(start);
while(!q.empty())
{
string top=q.front();
int dis=d[top];
if(top==ed) return dis;
q.pop();
int k=top.find("x");
int x=k/3,y=k%3;
for(int i=0;i<4;i++)
{
int newX=x+X[i],newY=y+Y[i];
if(newX>=0&&newX<3&&newY>=0&&newY<3)
{
swap(top[k],top[newX*3+newY]);
if(d.count(top)==0)
{
d[top]=dis+1;
q.push(top);
}
swap(top[k],top[newX*3+newY]);
}
}
}
return -1;
}
int main()
{
string start="";
for(int i=0;i<9;i++)
{
char c;
cin>>c;
start+=c;
}
cout<<bfs(start);
return 0;
}
3.3树与图的深度优先遍历
3.3.1 846. 树的重心
给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数 n,表示树的结点数。
接下来 n−1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。
输出格式
输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。
数据范围
1≤n≤105
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
#include<bits/stdc++.h>
using namespace std;
const int N=100010,M=2*N;
int n;
int h[N],e[M],ne[M],idx;
int ans=N;
bool st[N];
void add_to_head(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int dfs(int u)
{
st[u]=true;
int sz=0,sum=0;
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(st[j]) continue;
int s=dfs(j);
sz=max(sz,s);
sum+=s;
}
sz=max(sz,n-sum-1);
ans=min(ans,sz);
return sum+1;
}
int main()
{
cin>>n;
fill(h,h+N,-1);
for(int i=0;i<n-1;i++)
{
int a,b;
cin>>a>>b;
add_to_head(a,b);
add_to_head(b,a);
}
dfs(1);
cout<<ans;
return 0;
}
3.4树与图的广度优先遍历
3.4.1 847. 图中点的层次
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环。
所有边的长度都是 1,点的编号为 1∼n。
请你求出 1 号点到 n 号点的最短距离,如果从 1 号点无法走到 n 号点,输出 −1。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 a 和 b,表示存在一条从 a 走到 b 的长度为 1 的边。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
数据范围
1≤n,m≤105
输入样例:
4 5
1 2
2 3
3 4
1 3
1 4
输出样例:
1
#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int n,m;
int d[N];
int h[N],e[N],ne[N],idx;
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int bfs()
{
queue<int> q;
q.push(1);
d[1]=0;
while(!q.empty())
{
int t=q.front();
q.pop();
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(d[j]==-1)
{
d[j]=d[t]+1;
q.push(j);
}
}
}
return d[n];
}
int main()
{
cin>>n>>m;
fill(h,h+N,-1);
fill(d,d+N,-1);
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b);
}
cout<<bfs();
return 0;
}
3.5拓扑排序
拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
3.5.1 848. 有向图的拓扑序列
给定一个 n 个点 m 条边的有向图,点的编号是 1 到 n,图中可能存在重边和自环。
请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1。
若一个由图中所有点构成的序列 A 满足:对于图中的每条边 (x,y),x 在 A 中都出现在 y 之前,则称 A 是该图的一个拓扑序列。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 x 和 y,表示存在一条从点 x 到点 y 的有向边 (x,y)。
输出格式
共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。
否则输出 −1。
数据范围
1≤n,m≤105
输入样例:
3 3
1 2
2 3
1 3
输出样例:
1 2 3
#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int n,m;
int h[N],e[N],ne[N],idx;
int d[N];
vector<int> vc;
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool topsort()
{
queue<int> q;
for(int i=1;i<=n;i++)
{
if(d[i]==0) q.push(i);
}
while(!q.empty())
{
int t=q.front();
vc.push_back(t);
q.pop();
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
d[j]--;
if(d[j]==0) q.push(j);
}
}
if(vc.size()==n) return true;
return false;
}
int main()
{
cin>>n>>m;
fill(h,h+N,-1);
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b);
d[b]++;
}
if(topsort())
{
for(int i=0;i<vc.size();i++) cout<<vc[i]<<" ";
}
else cout<<-1;
return 0;
}
3.6Dijkstra
朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I
时间复杂是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定
// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n - 1; i ++ )
{
int t = -1; // 在还未确定最短路的点中,寻找距离最小的点
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
// 用t更新其他点的距离
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);
st[t] = true;
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II
时间复杂度 O(mlogn)O(mlogn), nn 表示点数,mm 表示边数
typedef pair<int, int> PII;
int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
3.6.1 849. Dijkstra求最短路 I
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
#include<bits/stdc++.h>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];
bool st[N];
int dijkstra(int s)
{
fill(dist,dist+N,INF);
dist[s]=0;
for(int i=1;i<=n;i++)
{
int t=-1;
for(int j=1;j<=n;j++)
{
if(!st[j]&&(t==-1||dist[t]>dist[j]))
t=j;
}
st[t]=true;
for(int j=1;j<=n;j++)
{
dist[j]=min(dist[j],dist[t]+g[t][j]);
}
}
if(dist[n]==INF) return -1;
return dist[n];
}
int main()
{
cin>>n>>m;
fill(g[0],g[0]+N*N,INF);
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
}
cout<<dijkstra(1);
return 0;
}
3.6.2 850. Dijkstra求最短路 II
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n,m≤1.5×105,
图中涉及边长均不小于 0,且不超过 10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
#include<bits/stdc++.h>
using namespace std;
const int N=150010,INF=0x3f3f3f3f;
typedef pair<int,int> PII;
int n,m;
int h[N],e[N],w[N],ne[N],idx;
bool st[N];
int dis[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int dijkstra(int s)
{
fill(dis,dis+N,INF);
dis[s]=0;
priority_queue<PII,vector<PII>,greater<PII> > heap;
heap.push(make_pair(0,s));
while(heap.size())
{
PII t=heap.top();
heap.pop();
int ver=t.second,distance=t.first;
if(st[ver]) continue;
st[ver]=true;
for(int i=h[ver];i!=-1;i=ne[i])
{
int j=e[i];
if(dis[j]>dis[ver]+w[i])
{
dis[j]=dis[ver]+w[i];
heap.push(make_pair(dis[j],j));
}
}
}
if(dis[n]==INF) return -1;
return dis[n];
}
int main()
{
cin>>n>>m;
fill(h,h+N,-1);
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
cout<<dijkstra(1);
return 0;
}
3.7bellman-ford
Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
3.7.1 853. 有边数限制的最短路
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。
数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过 10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
#include<bits/stdc++.h>
using namespace std;
const int N=510,M=10010,INF=0x3f3f3f3f;
int n,m,k;
struct Edge{
int a,b,w;
};
Edge edges[M];
int dis[N],backup[N];
int bellman_ford()
{
fill(dis,dis+N,INF);
dis[1]=0;
for(int i=0;i<k;i++)
{
memcpy(backup,dis,sizeof dis);
for(int j=0;j<m;j++)
{
Edge e=edges[j];
dis[e.b]=min(dis[e.b],backup[e.a]+e.w);
}
}
if(dis[n]>INF/2) return -1;
return dis[n];
}
int main()
{
cin>>n>>m>>k;
for(int i=0;i<m;i++)
{
int a,b,w;
cin>>a>>b>>w;
edges[i].a=a,edges[i].b=b,edges[i].w=w;
}
int ans=bellman_ford();
if(ans==-1) cout<<"impossible";
else cout<<dis[n];
return 0;
}
3.8spfa
spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路
时间复杂度 平均情况下 O(m)O(m),最坏情况下 O(nm)O(nm), nn 表示点数,mm 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中
// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q.push(j);
st[j] = true;
}
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
queue<int> q;
for (int i = 1; i <= n; i ++ )
{
q.push(i);
st[i] = true;
}
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
3.8.1 851. spfa求最短路
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。
数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
#include<bits/stdc++.h>
using namespace std;
const int N=100010,INF=0x3f3f3f3f;
int h[N],e[N],w[N],ne[N],idx;
int n,m;
int dis[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int spfa(int s)
{
fill(dis,dis+N,INF);
dis[s]=0;
queue<int> q;
q.push(s);
while(!q.empty())
{
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dis[j]>dis[t]+w[i])
{
dis[j]=dis[t]+w[i];
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
if(dis[n]==INF) return -1;
else return dis[n];
}
int main()
{
cin>>n>>m;
fill(h,h+N,-1);
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
int t=spfa(1);
if(t==-1) cout<<"impossible";
else cout<<t;
return 0;
}
3.8.2 852. spfa判断负环
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。
数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
const int N=100010,INF=0x3f3f3f3f;
int h[N],e[N],w[N],ne[N],idx;
int n,m;
int dis[N];
bool st[N];
int cnt[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
fill(dis,dis+N,INF);
dis[1]=0;
queue<int> q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(!q.empty())
{
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dis[j]>dis[t]+w[i])
{
dis[j]=dis[t]+w[i];
cnt[j]=cnt[t]+1;
if(cnt[j]>=n) return true;
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
}
int main()
{
cin>>n>>m;
fill(h,h+N,-1);
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
if(spfa()) cout<<"Yes";
else cout<<"No";
return 0;
}
3.9Floyd
floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3)O(n3), nn 表示点数
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
3.9.1 854. Floyd求最短路
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。
输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。
数据范围
1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
#include<bits/stdc++.h>
using namespace std;
const int N=210,M=20010,INF=1e9;
int n,m,k;
int d[N][N];
void Floy()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int main()
{
cin>>n>>m>>k;
fill(d[0],d[0]+N*N,INF);
for(int i=1;i<=n;i++)
{
d[i][i]=0;
}
for(int i=1;i<=m;i++)
{
int x,y,w;
cin>>x>>y>>w;
d[x][y]=min(d[x][y],w);
}
Floy();
while(k--)
{
int x,y;
cin>>x>>y;
if(d[x][y]>INF/2) cout<<"impossible"<<endl;
else cout<<d[x][y]<<endl;
}
return 0;
}
3.10Prim
朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树
时间复杂度是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数
int n; // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF;
if (i) res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}
return res;
}
3.10.1 858. Prim算法求最小生成树
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
#include<bits/stdc++.h>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N],dis[N];
bool st[N];
int prim()
{
fill(dis,dis+N,INF);
int res=0;
for(int i=0;i<n;i++)
{
int t=-1;
for(int j=1;j<=n;j++)
{
if(!st[j]&&(t==-1||dis[t]>dis[j]))
t=j;
}
if(i&&dis[t]==INF) return INF;
if(i) res+=dis[t];
st[t]=true;
for(int j=1;j<=n;j++)
dis[j]=min(dis[j],g[t][j]);
}
return res;
}
int main()
{
cin>>n>>m;
fill(g[0],g[0]+N*N,INF);
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=g[b][a]=min(g[a][b],c);
}
int t=prim();
if(t==INF) cout<<"impossible"<<endl;
else cout<<t<<endl;
return 0;
}
3.11Kruskal
Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树
时间复杂度是 O(mlogm)O(mlogm), nn 表示点数,mm 表示边数
int n, m; // n是点数,m是边数
int p[N]; // 并查集的父节点数组
struct Edge // 存储边
{
int a, b, w;
bool operator< (const Edge &W)const
{
return w < W.w;
}
}edges[M];
int find(int x) // 并查集核心操作
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edges, edges + m);
for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b) // 如果两个连通块不连通,则将这两个连通块合并
{
p[a] = b;
res += w;
cnt ++ ;
}
}
if (cnt < n - 1) return INF;
return res;
}
3.11.1 859. Kruskal算法求最小生成树
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
#include<bits/stdc++.h>
using namespace std;
const int N=200010;
int n,m;
int p[N];
struct Edge{
int a,b,w;
}edges[N];
bool cmp(Edge a,Edge b)
{
return a.w<b.w;
}
int findP(int x)
{
if(p[x]!=x) return p[x]=findP(p[x]);
return p[x];
}
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b,w;
cin>>a>>b>>w;
edges[i].a=a,edges[i].b=b,edges[i].w=w;
}
for(int i=0;i<m;i++)
{
p[i]=i;
}
sort(edges,edges+m,cmp);
int res=0,cnt=0;
for(int i=0;i<m;i++)
{
int a=edges[i].a,b=edges[i].b,w=edges[i].w;
a=findP(a),b=findP(b);
if(a!=b)
{
p[a]=b;
res+=w;
cnt++;
}
}
if(cnt!=n-1) cout<<"impossible"<<endl;
else cout<<res;
return 0;
}
3.12染色法判定二分图
染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图
时间复杂度是 O(n+m)O(n+m), nn 表示点数,mm 表示边数
int n; // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色
// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (color[j] == -1)
{
if (!dfs(j, !c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (color[i] == -1)
if (!dfs(i, 0))
{
flag = false;
break;
}
return flag;
}
3.12.1 860. 染色法判定二分图
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。
请你判断这个图是否是二分图。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。
输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。
数据范围
1≤n,m≤105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
const int N=100010,M=200010;
int n,m;
int color[N];
int h[N],e[M],ne[M],idx;
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool dfs(int u,int c)
{
color[u]=c;
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(!color[j])
{
if(!dfs(j,3-c))
return false;
}
else if(color[j]==c) return false;
}
return true;
}
int main()
{
cin>>n>>m;
fill(h,h+N,-1);
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b),add(b,a);
}
int flag=true;
for(int i=1;i<=n;i++)
{
if(!color[i])
{
if(!dfs(i,1))
{
flag=false;
break;
}
}
}
if(flag) cout<<"Yes";
else cout<<"No";
return 0;
}
3.13 匈牙利算法
匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}
3.13.1 861. 二分图的最大匹配
给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
输入格式
第一行包含三个整数 n1、 n2 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。
输出格式
输出一个整数,表示二分图的最大匹配数。
数据范围
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2
#include<bits/stdc++.h>
using namespace std;
const int N=510,M=100010;
int n1,n2,m;
int h[N],e[M],ne[M],idx;
int match[N];
bool st[N];
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
bool findG(int x)
{
for(int i=h[x];i!=-1;i=ne[i])
{
int j=e[i];
if(!st[j])
{
st[j]=true;
if(match[j]==0||findG(match[j]))
{
match[j]=x;
return true;
}
}
}
return false;
}
int main()
{
cin>>n1>>n2>>m;
fill(h,h+N,-1);
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b);
}
int res=0;
for(int i=1;i<=n1;i++)
{
fill(st,st+N,false);
if(findG(i)) res++;
}
cout<<res;
return 0;
}