【第三讲】搜索与图论

来自:算法基础课

第三讲 搜索与图论

树与图的存储
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。
(1) 邻接矩阵:g[a][b] 存储边a->b
(2) 邻接表:
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点

int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);

3.1DFS

树与图的遍历
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

int dfs(int u)
{
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

3.1.1 842. 排列数字

给定一个整数 n,将数字 1∼n 排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。

输入格式
共一行,包含一个整数 n。

输出格式
按字典序输出所有排列方案,每个方案占一行。

数据范围
1≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

#include<bits/stdc++.h>
using namespace std;
const int N=100;
int n;
int a[N],st[N];

void dfs(int idx)
{
    if(idx>n)
    {
        for(int i=1;i<=n;i++)
        {
            cout<<a[i]<<" ";
        }
        cout<<endl;
        return;
    }
    for(int i=1;i<=n;i++)
    {
        if(st[i]==false)
        {
            a[idx]=i;
            st[i]=true;
            dfs(idx+1);
            st[i]=false;
        }
    }
}
int main()
{
    cin>>n;
    dfs(1);
    return 0;
}

3.1.1 843. n-皇后问题

n− 皇后问题是指将 n 个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 n,请你输出所有的满足条件的棋子摆法。

输入格式
共一行,包含整数 n。

输出格式
每个解决方案占 n 行,每行输出一个长度为 n 的字符串,用来表示完整的棋盘状态。
其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围
1≤n≤9
输入样例:
4
输出样例:
.Q…
…Q
Q…
…Q.

…Q.
Q…
…Q
.Q…

#include<bits/stdc++.h>
using namespace std;
const int N=15;
int n;
char g[N][N];
bool dg[2*N],udg[2*N];
bool judge(int x,int y)
{
    for(int i=1;i<=n;i++)
    {
        if(g[x][i]=='Q'||g[i][y]=='Q') return false;
    }
    if(dg[x+y]||udg[n-x+y]) return false;
    return true;
}
void dfs(int u)
{
    if(u>n)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                cout<<g[i][j];
                if(j==n) cout<<endl;
            }
        }
        cout<<endl;
        return;
    }
    for(int i=1;i<=n;i++)
    {
        if(judge(u,i))
        {
            g[u][i]='Q';
            dg[u+i]=udg[n-u+i]=true;
            dfs(u+1);
            g[u][i]='.';
            dg[u+i]=udg[n-u+i]=false;
        }
    }
}
int main()
{
    cin>>n;
    fill(g[0],g[0]+N*N,'.');
    dfs(1);
    return 0;
}

3.2BFS

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

3.2.1 844. 走迷宫

给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m) 处,至少需要移动多少次。
数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。

输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。

输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围
1≤n,m≤100
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8

#include<bits/stdc++.h>
using namespace std;
const int N=110;
struct Node{
    int x,y,layer;
}node;
int n,m;
int g[N][N];
bool inq[N][N];
int X[4]={0,0,1,-1},Y[4]={1,-1,0,0};
int edx,edy;
bool judge(int x,int y)
{
    if(x<1||x>n||y<1||y>m) return false;
    if(inq[x][y]) return false;
    return true;
}
int bfs(int x,int y)
{
    node.x=x,node.y=y,node.layer=0;
    queue<Node> q;
    q.push(node);
    inq[x][y]=true;
    while(!q.empty())
    {
        Node top=q.front();
        q.pop();
        for(int i=0;i<4;i++)
        {
            node.x=top.x+X[i],node.y=top.y+Y[i],node.layer=top.layer+1;
            if(judge(node.x,node.y)&&!g[node.x][node.y])
            {
                q.push(node);
                inq[node.x][node.y]=true;
                if(node.x==edx&&node.y==edy) return node.layer;
            }
        }
    }
}
int main()
{
    cin>>n>>m;
    edx=n,edy=m;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cin>>g[i][j];
        }
    }
    cout<<bfs(1,1);
    return 0;
}

3.2.2 845. 八数码

在一个 3×3 的网格中,1∼8 这 8 个数字和一个 x 恰好不重不漏地分布在这 3×3 的网格中。
例如:
1 2 3
x 4 6
7 5 8
在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。
我们的目的是通过交换,使得网格变为如下排列(称为正确排列):
1 2 3
4 5 6
7 8 x
例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。
交换过程如下:
1 2 3 1 2 3 1 2 3 1 2 3
x 4 6 4 x 6 4 5 6 4 5 6
7 5 8 7 5 8 7 x 8 7 8 x
现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。

输入格式
输入占一行,将 3×3 的初始网格描绘出来。
例如,如果初始网格如下所示:
1 2 3
x 4 6
7 5 8
则输入为:1 2 3 x 4 6 7 5 8

输出格式
输出占一行,包含一个整数,表示最少交换次数。
如果不存在解决方案,则输出 −1。

输入样例:
2 3 4 1 5 x 7 6 8
输出样例
19

#include<bits/stdc++.h>
using namespace std;
int stx,sty;
int X[4]={0,0,-1,1},Y[4]={1,-1,0,0};
int bfs(string start)
{
    string ed="12345678x";
    queue<string> q;
    unordered_map<string,int> d;
    d[start]=0;
    q.push(start);
    while(!q.empty())
    {
        string top=q.front();
        int dis=d[top];
        if(top==ed) return dis;
        q.pop();
        int k=top.find("x");
        int x=k/3,y=k%3;
        for(int i=0;i<4;i++)
        {
            int newX=x+X[i],newY=y+Y[i];
            if(newX>=0&&newX<3&&newY>=0&&newY<3)
            {
                swap(top[k],top[newX*3+newY]);
                if(d.count(top)==0)
                {
                    d[top]=dis+1;
                    q.push(top);
                }
                swap(top[k],top[newX*3+newY]);
            }
        }
    }
    return -1;
}
int main()
{
    string start="";
    for(int i=0;i<9;i++)
    {
        char c;
        cin>>c;
        start+=c;
    }
    cout<<bfs(start);
    return 0;
}

3.3树与图的深度优先遍历

3.3.1 846. 树的重心

给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

输入格式
第一行包含整数 n,表示树的结点数。
接下来 n−1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。

输出格式
输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。

数据范围
1≤n≤105
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4

#include<bits/stdc++.h>
using namespace std;
const int N=100010,M=2*N;
int n;
int h[N],e[M],ne[M],idx;
int ans=N;
bool st[N];
void add_to_head(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

int dfs(int u)
{
    st[u]=true;
    int sz=0,sum=0;
    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(st[j]) continue;
        int s=dfs(j);
        sz=max(sz,s);
        sum+=s;
    }
    sz=max(sz,n-sum-1);
    ans=min(ans,sz);
    return sum+1;
}
int main()
{
    cin>>n;
    fill(h,h+N,-1);
    for(int i=0;i<n-1;i++)
    {
        int a,b;
        cin>>a>>b;
        add_to_head(a,b);
        add_to_head(b,a);
    }
    dfs(1);
    cout<<ans;
    return 0;
}

3.4树与图的广度优先遍历

3.4.1 847. 图中点的层次

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环。
所有边的长度都是 1,点的编号为 1∼n。
请你求出 1 号点到 n 号点的最短距离,如果从 1 号点无法走到 n 号点,输出 −1。

输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 a 和 b,表示存在一条从 a 走到 b 的长度为 1 的边。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。

数据范围
1≤n,m≤105
输入样例:
4 5
1 2
2 3
3 4
1 3
1 4
输出样例:
1

#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int n,m;
int d[N];
int h[N],e[N],ne[N],idx;
void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int bfs()
{
    queue<int> q;
    q.push(1);
    d[1]=0;
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(d[j]==-1)
            {
                d[j]=d[t]+1;
                q.push(j);
            }
        }
    }
    return d[n];
}
int main()
{
    cin>>n>>m;
    fill(h,h+N,-1);
    fill(d,d+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }
    cout<<bfs();
    return 0;
}

3.5拓扑排序

拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数

bool topsort()
{
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

3.5.1 848. 有向图的拓扑序列

给定一个 n 个点 m 条边的有向图,点的编号是 1 到 n,图中可能存在重边和自环。
请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1。
若一个由图中所有点构成的序列 A 满足:对于图中的每条边 (x,y),x 在 A 中都出现在 y 之前,则称 A 是该图的一个拓扑序列。

输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 x 和 y,表示存在一条从点 x 到点 y 的有向边 (x,y)。

输出格式
共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。
否则输出 −1。

数据范围
1≤n,m≤105
输入样例:
3 3
1 2
2 3
1 3
输出样例:
1 2 3

#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int n,m;
int h[N],e[N],ne[N],idx;
int d[N];
vector<int> vc;
void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool topsort()
{
    queue<int> q;
    for(int i=1;i<=n;i++)
    {
        if(d[i]==0) q.push(i);
    }
    while(!q.empty())
    {
        int t=q.front();
        vc.push_back(t);
        q.pop();
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            d[j]--;
            if(d[j]==0) q.push(j);
        }
    }
    if(vc.size()==n) return true;
    return false;
}
int main()
{
    cin>>n>>m;
    fill(h,h+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        d[b]++;
    }
    if(topsort())
    {
        for(int i=0;i<vc.size();i++) cout<<vc[i]<<" ";
    }
    else cout<<-1;
    return 0;
}

3.6Dijkstra

朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I
时间复杂是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II
时间复杂度 O(mlogn)O(mlogn), nn 表示点数,mm 表示边数

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

3.6.1 849. Dijkstra求最短路 I

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

#include<bits/stdc++.h>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];
bool st[N];

int dijkstra(int s)
{
    fill(dist,dist+N,INF);
    dist[s]=0;
    for(int i=1;i<=n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!st[j]&&(t==-1||dist[t]>dist[j]))
                t=j;
        }
        st[t]=true;
        for(int j=1;j<=n;j++)
        {
                dist[j]=min(dist[j],dist[t]+g[t][j]);
        }
    }
    if(dist[n]==INF) return -1;
    return dist[n];
}

int main()
{
    cin>>n>>m;
    fill(g[0],g[0]+N*N,INF);
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=min(g[a][b],c);
    }
    cout<<dijkstra(1);
    return 0;
}

3.6.2 850. Dijkstra求最短路 II

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

数据范围
1≤n,m≤1.5×105,
图中涉及边长均不小于 0,且不超过 10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

#include<bits/stdc++.h>
using namespace std;
const int N=150010,INF=0x3f3f3f3f;
typedef pair<int,int> PII;
int n,m;
int h[N],e[N],w[N],ne[N],idx;
bool st[N];
int dis[N];
void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

int dijkstra(int s)
{
    fill(dis,dis+N,INF);
    dis[s]=0;
    priority_queue<PII,vector<PII>,greater<PII> > heap;
    heap.push(make_pair(0,s));
    while(heap.size())
    {
        PII t=heap.top();
        heap.pop();

        int ver=t.second,distance=t.first;
        if(st[ver]) continue;
        st[ver]=true;
        for(int i=h[ver];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dis[j]>dis[ver]+w[i])
            {
                dis[j]=dis[ver]+w[i];
                heap.push(make_pair(dis[j],j));
            }
        }
    }
    if(dis[n]==INF) return -1;
    return dis[n];
}
int main()
{
    cin>>n>>m;
    fill(h,h+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    cout<<dijkstra(1);
    return 0;
}

3.7bellman-ford

Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

3.7.1 853. 有边数限制的最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。

数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过 10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

#include<bits/stdc++.h>
using namespace std;
const int N=510,M=10010,INF=0x3f3f3f3f;
int n,m,k;
struct Edge{
    int a,b,w;
};
Edge edges[M];
int dis[N],backup[N];

int bellman_ford()
{
    fill(dis,dis+N,INF);
    dis[1]=0;
    for(int i=0;i<k;i++)
    {
        memcpy(backup,dis,sizeof dis);
        for(int j=0;j<m;j++)
        {
            Edge e=edges[j];
            dis[e.b]=min(dis[e.b],backup[e.a]+e.w);
        }
    }
    if(dis[n]>INF/2) return -1;
    return dis[n];
}
int main()
{
    cin>>n>>m>>k;
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        edges[i].a=a,edges[i].b=b,edges[i].w=w;
    }
    int ans=bellman_ford();
    if(ans==-1) cout<<"impossible";
    else cout<<dis[n];
    return 0;
}

3.8spfa

spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路
时间复杂度 平均情况下 O(m)O(m),最坏情况下 O(nm)O(nm), nn 表示点数,mm 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

3.8.1 851. spfa求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。

数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2

#include<bits/stdc++.h>
using namespace std;
const int N=100010,INF=0x3f3f3f3f;
int h[N],e[N],w[N],ne[N],idx;
int n,m;
int dis[N];
bool st[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

int spfa(int s)
{
    fill(dis,dis+N,INF);
    dis[s]=0;
    queue<int> q;
    q.push(s);
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        st[t]=false;

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dis[j]>dis[t]+w[i])
            {
                dis[j]=dis[t]+w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    if(dis[n]==INF) return -1;
    else return dis[n];
}
int main()
{
    cin>>n>>m;
    fill(h,h+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    int t=spfa(1);
    if(t==-1) cout<<"impossible";
    else cout<<t;
    return 0;
}

3.8.2 852. spfa判断负环

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。

数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes

#include<bits/stdc++.h>
using namespace std;
const int N=100010,INF=0x3f3f3f3f;
int h[N],e[N],w[N],ne[N],idx;
int n,m;
int dis[N];
bool st[N];
int cnt[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool spfa()
{
    fill(dis,dis+N,INF);
    dis[1]=0;
    queue<int> q;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        st[i]=true;
    }
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        st[t]=false;

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dis[j]>dis[t]+w[i])
            {
                dis[j]=dis[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}
int main()
{
    cin>>n>>m;
    fill(h,h+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    if(spfa()) cout<<"Yes";
    else cout<<"No";
    return 0;
}

3.9Floyd

floyd算法 —— 模板题 AcWing 854. Floyd求最短路
时间复杂度是 O(n3)O(n3), nn 表示点数

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

3.9.1 854. Floyd求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible。
数据保证图中不存在负权回路。

输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。

数据范围
1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1

#include<bits/stdc++.h>
using namespace std;
const int N=210,M=20010,INF=1e9;
int n,m,k;

int d[N][N];

void Floy()
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int main()
{
    cin>>n>>m>>k;
    fill(d[0],d[0]+N*N,INF);
    for(int i=1;i<=n;i++)
    {
        d[i][i]=0;
    }
    for(int i=1;i<=m;i++)
    {
        int x,y,w;
        cin>>x>>y>>w;
        d[x][y]=min(d[x][y],w);

    }
    Floy();
    while(k--)
    {
        int x,y;
        cin>>x>>y;
        if(d[x][y]>INF/2) cout<<"impossible"<<endl;
        else cout<<d[x][y]<<endl;
    }
    return 0;
}

3.10Prim

朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树
时间复杂度是 O(n2+m)O(n2+m), nn 表示点数,mm 表示边数

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

3.10.1 858. Prim算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

#include<bits/stdc++.h>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int n,m;
int g[N][N],dis[N];
bool st[N];
int prim()
{
    fill(dis,dis+N,INF);
    int res=0;
    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!st[j]&&(t==-1||dis[t]>dis[j]))
                t=j;
        }
        if(i&&dis[t]==INF) return INF;

        if(i) res+=dis[t];

        st[t]=true;

        for(int j=1;j<=n;j++)
            dis[j]=min(dis[j],g[t][j]);
    }
    return res;
}
int main()
{
    cin>>n>>m;
    fill(g[0],g[0]+N*N,INF);
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=g[b][a]=min(g[a][b],c);
    }

    int t=prim();
    if(t==INF) cout<<"impossible"<<endl;
    else cout<<t<<endl;
    return 0;
}

3.11Kruskal

Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树
时间复杂度是 O(mlogm)O(mlogm), nn 表示点数,mm 表示边数

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

3.11.1 859. Kruskal算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

#include<bits/stdc++.h>
using namespace std;
const int N=200010;
int n,m;
int p[N];

struct Edge{
    int a,b,w;
}edges[N];

bool cmp(Edge a,Edge b)
{
    return a.w<b.w;
}

int findP(int x)
{
    if(p[x]!=x) return p[x]=findP(p[x]);
    return p[x];
}
int main()
{
    cin>>n>>m;
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        edges[i].a=a,edges[i].b=b,edges[i].w=w;
    }

    for(int i=0;i<m;i++)
    {
        p[i]=i;
    }
    sort(edges,edges+m,cmp);

    int res=0,cnt=0;
    for(int i=0;i<m;i++)
    {
        int a=edges[i].a,b=edges[i].b,w=edges[i].w;
        a=findP(a),b=findP(b);
        if(a!=b)
        {
            p[a]=b;
            res+=w;
            cnt++;
        }
    }
    if(cnt!=n-1) cout<<"impossible"<<endl;
    else cout<<res;
    return 0;
}

3.12染色法判定二分图

染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图
时间复杂度是 O(n+m)O(n+m), nn 表示点数,mm 表示边数
int n; // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

3.12.1 860. 染色法判定二分图

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。
请你判断这个图是否是二分图。

输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。

数据范围
1≤n,m≤105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes

#include<bits/stdc++.h>
using namespace std;
const int N=100010,M=200010;
int n,m;
int color[N];
int h[N],e[M],ne[M],idx;

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool dfs(int u,int c)
{
    color[u]=c;
    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!color[j])
        {
            if(!dfs(j,3-c))
                return false;
        }
        else if(color[j]==c) return false;
    }
    return true;
}
int main()
{
    cin>>n>>m;
    fill(h,h+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b),add(b,a);
    }

    int flag=true;
    for(int i=1;i<=n;i++)
    {
        if(!color[i])
        {
            if(!dfs(i,1))
            {
                flag=false;
                break;
            }
        }
    }
    if(flag) cout<<"Yes";
    else cout<<"No";
    return 0;
}

3.13 匈牙利算法

匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边

int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

3.13.1 861. 二分图的最大匹配

给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入格式
第一行包含三个整数 n1、 n2 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式
输出一个整数,表示二分图的最大匹配数。

数据范围
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2

#include<bits/stdc++.h>
using namespace std;
const int N=510,M=100010;

int n1,n2,m;
int h[N],e[M],ne[M],idx;
int match[N];
bool st[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool findG(int x)
{
    for(int i=h[x];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!st[j])
        {
            st[j]=true;
            if(match[j]==0||findG(match[j]))
            {
                match[j]=x;
                return true;
            }
        }
    }
    return false;
}
int main()
{
    cin>>n1>>n2>>m;
    fill(h,h+N,-1);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }
    int res=0;
    for(int i=1;i<=n1;i++)
    {
        fill(st,st+N,false);
        if(findG(i)) res++;
    }
    cout<<res;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值