若买卖不在相邻城市,朴素的想法是遍历找出路径,然后找出路径上的最高最低价格得到价格差。然而每次光找路径就要耗费O(n)的时间,而题目中肯定有多个Query。
用动态规划的思路解决问题,对指定两点uv,假设v往上走2^k步的父节点为t,走2^(k+1)步的父节点为u,如下图所示
边上的数字表示深度之差。
定义四个dp数组:
int dp_max[MAX_LOG_V][MAX_V], dp_min[MAX_LOG_V][MAX_V]; // 往上走2^k步之间的最高与最低价格
int dp_up[MAX_LOG_V][MAX_V], dp_down[MAX_LOG_V][MAX_V]; // [从v往上走2^k步之间]或[往下走2^k步到v之间]相应的最大利润
前两个很好计算,对于uv的dp_up,买卖事件有3种情况:
买和卖都发生在ut之间
买和卖都发生在tv之间
买和卖分别发生在ut和tv之间
所以递推公式如下
dp_up[k + 1][v] = max(max(dp_up[k][v], dp_up[k][t]), dp_max[k][t] - dp_min[k][v]);
同理有dp_down。
预处理算出这4个dp数组后,对任意uv,取t=lca,用类似的思想分成3种情况(对于前两种情况有down和up的子分支),取最大值即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int MaxN = 50000;
const int MaxLog = 16;
int n, m;
vector<int> g[MaxN + 1];
int w[MaxN + 1], f[MaxLog][MaxN + 1], depth[MaxN + 1];
int dp_max[MaxLog][MaxN + 1], dp_min[MaxLog][MaxN + 1];
int dp_up[MaxLog][MaxN + 1], dp_down[MaxLog][MaxN + 1];
void dfs(int u, int fa, int deep)
{
f[0][u] = fa;
depth[u] = deep;
dp_max[0][u] = max(w[u], w[fa]);
dp_min[0][u] = min(w[u], w[fa]);
dp_up[0][u] = max(w[fa] - w[u], 0);
dp_down[0][u] = max(w[u] - w[fa], 0);
for (int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if (v != fa)
dfs(v, u, deep + 1);
}
}
void init()
{
memset(dp_max, 0, sizeof(dp_max));
memset(dp_min, 0x3f, sizeof(dp_min));
dfs(1, 0, 1);
for (int k = 0; k + 1 < MaxLog; k++)
for (int v = 1; v <= n; v++)
{
if (!f[k][v])
f[k + 1][v] = 0;
else
{
f[k + 1][v] = f[k][f[k][v]];
int t = f[k][v];
dp_max[k + 1][v] = max(dp_max[k][v], dp_max[k][t]);
dp_min[k + 1][v] = min(dp_min[k][v], dp_min[k][t]);
dp_up[k + 1][v] = max(max(dp_up[k][v], dp_up[k][t]), dp_max[k][t] - dp_min[k][v]);
dp_down[k + 1][v] = max(max(dp_down[k][v], dp_down[k][t]), dp_max[k][v] - dp_min[k][t]);
}
}
}
int lca(int a, int b)
{
if (depth[a] < depth[b])
swap(a, b);
int d = depth[a] - depth[b];
for (int i = 0; d; d >>= 1, i++)
if (d & 1)
a = f[i][a];
if (a == b)
return a;
for (int i = MaxLog - 1; i >= 0; i--)
if (f[i][a] != f[i][b])
a = f[i][a], b = f[i][b];
return f[0][a];
}
int up(int x, int k, int &min_price)
{
min_price = 0x3f3f3f3f;
int max_profit = 0;
int prev_min_price = 0x3f3f3f3f;
for (int i = MaxLog - 1; i >= 0; i--)
{
if (k >> i & 1)
{
min_price = min(min_price, dp_min[i][x]);
max_profit = max(max_profit, dp_up[i][x]);
max_profit = max(max_profit, dp_max[i][x] - prev_min_price);
prev_min_price = min(prev_min_price, dp_min[i][x]);
x = f[i][x];
}
}
return max_profit;
}
int down(int x, int k, int &max_price)
{
max_price = 0;
int max_profit = 0;
int pre_max_price = 0;
for (int i = MaxLog - 1; i >= 0; i--)
{
if (k >> i & 1)
{
max_price = max(max_price, dp_max[i][x]);
max_profit = max(max_profit, dp_down[i][x]);
max_profit = max(max_profit, pre_max_price - dp_min[i][x]);
pre_max_price = max(pre_max_price, dp_max[i][x]);
x = f[i][x];
}
}
return max_profit;
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &w[i]);
for (int i = 1; i <= n; i++)
g[i].clear();
for (int i = 1; i < n; i++)
{
int u, v;
scanf("%d %d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
init();
int Q;
scanf("%d", &Q);
while (Q--)
{
int u, v;
scanf("%d %d", &u, &v);
int k = lca(u, v);
int max_price, min_price;
int up_profit = up(u, depth[u] - depth[k], min_price);
int down_profit = down(v, depth[v] - depth[k], max_price);
int ans = max(max(up_profit, down_profit), max_price - min_price);
printf("%d\n", ans);
}
return 0;
}