main.cpp
#include <iostream>
#include <cassert>
#include <ctime>
using namespace std;
// 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
template<typename T>
int binarySearch(T arr[], int n, T target){
// 在arr[l...r]之中查找target
int l = 0, r = n-1;
while( l <= r ){
//int mid = (l + r)/2;
int mid = l + (r-l)/2;
if( arr[mid] == target )
return mid;
if( arr[mid] > target )
r = mid - 1;
else
l = mid + 1;
}
return -1;
}
// 用递归的方式写二分查找法
template<typename T>
int __binarySearch2(T arr[], int l, int r, T target){
if( l > r )
return -1;
int mid = (l+r)/2;
if( arr[mid] == target )
return mid;
else if( arr[mid] > target )
return __binarySearch2(arr, 0, mid-1, target);
else
return __binarySearch2(arr, mid+1, r, target);
}
template<typename T>
int binarySearch2(T arr[], int n, T target){
return __binarySearch2( arr , 0 , n-1, target);
}
int main() {
int n = 1000000;
int* a = new int[n];
for( int i = 0 ; i < n ; i ++ )
a[i] = i;
// 测试非递归二分查找法
clock_t startTime = clock();
for( int i = 0 ; i < 2*n ; i ++ ){
int v = binarySearch(a, n, i);
if( i < n )
assert( v == i );
else
assert( v == -1 );
}
clock_t endTime = clock();
cout << "Binary Search (Without Recursion): " << double(endTime - startTime) / CLOCKS_PER_SEC << " s"<<endl;
// 测试递归的二分查找法
startTime = clock();
for( int i = 0 ; i < 2*n ; i ++ ){
int v = binarySearch2(a, n, i);
if( i < n )
assert( v == i );
else
assert( v == -1 );
}
endTime = clock();
cout << "Binary Search (Recursion): " << double(endTime - startTime) / CLOCKS_PER_SEC << " s"<<endl;
delete[] a;
return 0;
}
本文深入探讨了二分查找算法的两种实现方式:非递归与递归,并通过大量测试数据对比了它们的执行效率。实验结果显示,在相同条件下,非递归版本的二分查找在运行速度上优于递归版本。
1848

被折叠的 条评论
为什么被折叠?



